& rednat I €COS)

eCosl] Reference Manual

September 2000

Copyright © 1998, 1999, 2000, Red Hat Inc

Copying terms

The contents of this manual are subject to the Red Hat eCos Public License Version
1.1 (the "License"); you may not use thisfile except in compliance with the License.
Y ou may obtain a copy of the License at http://www.redhat.com/

Software distributed under the Licenseis distributed on an "AS|1S' basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the
specific language governing rights and limitations under the License.

The Original Code is eCos - Embedded Configurable Operating System, released
September 30, 1998.

The Initial Developer of the Original Code is Red Hat. Portions created by Red Hat
are Copyright©) 1998, 1999, 2000 Red Hat, Inc. All Rights Reserved.

Trademarks

Javall, Sun®, and Solaris[] are trademarks and registered trademarks of Sun
Microsystems, Inc.

SPARC® isaregistered trademark of SPARC International, Inc.
UNIXO isatrademark of The Open Group.

Microsoft®, Windows NT®, Windows 95®, Windows 98® and Windows 2000® are
registered trademarks of Microsoft Corporation.

Linux® is aregistered trademark of Linus Torvalds.

Intel® is aregistered trademark of Intel Corporation.
eCosl] isa trademark of Red Hat, Inc.

Red Hat® is aregistered trademark of Red Hat, Inc.

300-400-1010049-03

2 m eCos Reference Manual eCos

Contents

eCos] Reference Manualcccevvevvenciercie s 1

Part I PrelimiNarieSottt 1
ECOS KENNEl OVENVIEW.......ecueieicteciee ettt ettt s 2

(ST e 110 [V = 2

Thread synchronizationcccceevieviiceevene e 3

(o= o) 0] S 4

TS 1 0o PRSP SROTRRPRRR 5

Counters, clocks, alarms and tiIMESvveeeeee i e eee s 6

A tour of the Kernel SDUICES.........cccceeveeriesen e 7

(= 11 11 0 L= R 7

Kernel SOUrCE fil€S....oiuiiiiiiieccece e 10

e O = 1 = N S 16
Requirements for programs..........cccceeceieeieeseseeceesee s eseseseesienens 17

(oY o VTS < S = (S 17

NECESSAY NEAAENS.....ccvei e e 17

Necessary [INK iNStrUCLIONS........c.coviieeesececee e 18

Interrupt and exception handlers...........ccceeve e 18

MeMOrY @llOCaHION.......cceeveiieceeeece e 19

eCos eCos Reference Manual = iii

Assertions and bad parameter handling.........c.cccoeeeeevienvieevcen e 20

VS (1 IR = L U | o TSRS 21
System start-up — the HALcocveeecee e, 21
System start-up — Cyg_Start() ..oocveeeeeieeieese e 21
System startup — cyg_Prestart() ...oooeeeeeeeeeeseesere e 22
System startup — cyg_package start()ccoceveeeiievieenienceereeiens 22
System startup — cyg_user_start()........cceeevveeeeeesienesiee e 23

Native kernel Clanguage APl ..o 24
Types used in programming €CO0S...........cccvvvereerenieseeseeseseeeenns 24
Thread OPEratioNSccceeveeree e s e 27
Priority manipulationcccceveieeiiesese e 31
Exception handlingcooeevriee s 31
Interrupt handlingccooeviieeece e 32
Counters, ClOCKS aNd @larMSeeeeeeieieeeeeee e et ee e e e eeeree e e 34
SYNChIONIZALIONecveceieciece e 38
MEMOIY POOIS......eiicieiiecere et et et re e 42
MESSAE BOXES......cocveciecie et 45
o =0 1S 47

HITRON AP .o 51
Task Management FUNCLIONS...........ccccvveevivese e 53
Task-Dependent Synchronization FUNctions............cccceeevceevvenee. 55
Synchronization and Communication Functions..............cc.ceeee..... 56
Extended Synchronization and Communication Functions........... 59
Interrupt management fuNCtionS..........cccccevieviece e 59
Memory pool Management FUNCLIONS...........cccccveveenenieeseeseenes 60
Time Management FUNCLIONSccccveeevineece s 63
System Management FUNCLIONS...........ccocovriveeiieeeciesieeieseeeeeeeeens 64
Network SUppOrt FUNCLIONS.........ccceiiieeiecece e 65

The eCosHardware Abstraction Layer (HAL)ccccevveeeecievieeneene, 66
Architecture, implementation and platform..........cccocevveineene 66
General PriNCIPIES......cceeviiriceerese st 67
Architectural HAL fil@S.....ooi i 67
FUture devel OPMENES........ccoivvciececce et 83

iv m eCos Reference Manual eCos

Kernel porting NOEScecee et 85

eCosInterrupt MOcooveciereceeseee e e 94

Part T PCl LIDIArYcooveece ettt e e 98
The eCOSPCI Library ...t s 99

[O I o = Y 99

PCI Library reference.......ccoevviiiieieie e 104

Part 1V: 1/O Package (DeViCe DIVENS)ccccceveevereeee e e e eee e esae e 109
g 0o 1§ Tox o o I 110

USEN AP e 112

Serial driver detailS......cocoveieeiiicee e 114

“simple serial” driVEr ... 114

B YA o (Y= S 120

HOW O WIItE @ ArIVES ..o 123

How to write a serial hardware interface module....................... 125

Device Driver Interfacetothe Kernelccocovveevvieeicce e, 129

INterrupt MOGEc.coieieceeecc e 129

SYNCHIONIZBLION ...t 130

Device Driver MOGEIS.........cceeveieiicee et 130

Synchronization LEVEIS ...t 131

THE AP ..o 132

Part V: The SO Standard C and Math Libraries..........ccccccevoveveveecenieneenen, 145
C and math library overview..........cccccceeeeeceeveccee s 146

Omitted fUNCLIONAlItYccecoeeeie e 147

Included NON-1SO fUNCLIONS.........cccvviiieieee e 147

Math library compatibility modes..........ccccccceveviivin i 148

Some implementation details...........cccceoeviiieve s 151

THread SAFELYcoiveeeeeeee e 153

OB 110z 14V = 1 (U] o TS 153

T L= GRS 155

eCos eCos Reference Manual = v

vi m eCos Reference Manual eCos

Part |I: Preliminaries

eCos eCos Reference Manual n 1

eCos kernel overview

eCos kernel overview

Thisisan overview of the internal workings of the eCosd kernel.

The scheduler

At the core of the kernel isthe scheduler. This defines the way in which threads are
run, and provides the mechanisms by which they may synchronize. It also controls the
means by which interrupts affect thread execution. No single scheduler can cover al
possible system configurations. For different purposes we will need to cover severa
scheduling polices. In this release two schedulers are provided (described in more
detail in “ Sched subdirectory” on page 10):

abitmap scheduler
amulti-level queue scheduler

At present the system will only support a single scheduler at any one time. Future
systems may allow multiple schedulers to co-exist, but thiswill be hidden behind the
scheduler API in the current release.

To make scheduling safe we need a mechanism to protect the scheduler data structures
from concurrent access. The traditional approach to thisisto disableinterrupts during
the critical regions. Unfortunately this increases the maximum interrupt dispatch
latency, which isto be avoided in any real-time system.

The mechanisms chosen for eCosisto maintain acounter, Schedul er: : sched_| ock

2 n eCos Reference Manual eCos

eCos kernel overview

that, if non-zero, prevents any rescheduling. The current thread can claim the lock by
calling schedul er: : 1 ock() . Thisincrements the counter and prevents any further
scheduling. The function Schedul er: : unl ock() decrementsthe counter and if it
returns to zero, allows scheduling to continue.

For thisto work in the presence of interrupts, it is necessary for the Interrupt Service
Routines (1SR) to defer any schedul er-oriented operations until the lock is about to go
zero. We do this by splitting the work of an ISR into two parts, with the second part,
the Deferred Service Routine (DSR), being queued until the scheduler decidesitis
safeto run. Thisiscovered in more detail in “Interrupts’ on page 5 and “ Interrupt and
exception handlers’” on page 18.

On a uni-processor, Schedul er: : 1 ock() isasimpleincrement of

Scheduler::sched lock. It does not need to be a read-modify-write cycle since the lock
is strictly nested. The mere fact that the current thread is running implies that the lock
has not been claimed by another thread, so it is always claimable.

Schedul er: : unl ock() isgeneric to al scheduler implementations.

Thread synchronization

To alow threads to cooperate and compete for resources, it is necessary to provide
mechanisms for synchronization and communication. The classic synchronization
mechanisms are mutexes/condition variables and semaphores. These are provided in
the eCoskernel, together with other synchronization/communication mechanisms that
are common in real-time systems, such as event flags and message queues.

One of the problems that must be dealt with in any real-time systemsis priority
inversion. Thisiswhere ahigh priority thread is (wrongly) prevented from continuing
by one at lower priority. The normal exampleis of ahigh priority thread waiting at a
mutex already held by alow priority thread. If the low priority thread is preempted by
amedium priority thread then priority inversion has occurred since the high priority
thread is prevented from continuing by an unrelated thread of lower priority.

This problem got much attention recently when the Mars Pathfinder mission had to
reset the computers on the ground expl oration robot repeatedly because a priority
inversion problem would cause it to hang.

There are several solutions to this problem. The simplest isto employ a priority
ceiling protocol where al threads that acquire the mutex have their priority boosted to
some predetermined value. This has a number of disadvantages: it requires the
maximum priority of the threads using the mutex to be known in advance; if the
ceiling priority istoo high it acts as a global lock disabling all scheduling and it is
pessimistic, taking action to prevent the problem even when it does not arise.

A better solution isto use priority inheritance protocol. Here, the priority of the thread

eCos

eCos Reference Manual n 3

eCos kernel overview

that owns the mutex is boosted to equal that of the highest priority thread that is
waiting for it. Thistechnique does not require prior knowledge of the priorities of the
threads that are going to use the mutex, and the priority of the owning thread is only
boosted when a higher priority thread is waiting. This reduces the effect on the
scheduling of other threads, and is more optimistic than the priority ceiling protocol.
A disadvantage of this mechanism is that the cost of each synchronization call is
increased since the inheritance protocol must be obeyed each time.

A third approach to priority inversion isto recognize that relative thread priorities
have been poorly chosen and thus the system in which it occursis faulty. In this case
the kernel needs the ability to detect when priority inversion has taken place, and to
raise an exception when it occursto aid debugging. Then this code is removed from
the shipping version.

The current eCos release provides arelatively simple implementation of mutex
priority inheritance. This implementation will only work in the multi-level queue
scheduler, and it does not handle the rare case of nested mutexes completely correctly.
However it isboth fast and deterministic. Mutex priority inheritance can be disabled if
the application does not requireit. This will reduce both code size and data space.

Future releases will provide alternative implementations of mutex priority inheritance,
and application developers will be able to choose the implementation appropriate to
their application.

Exceptions

An exception is a synchronous event caused by the execution of athread. These
include both the machine exceptions raised by hardware (such as divide-by-zero,
memory fault and illegal instruction) and machine exceptionsraised by software (such
as deadline overrun). The standard C++ exception mechanism istoo expensive to use
for this, and in any case has the wrong semantics for the exception handling in an
RTOS.

The simplest, and most flexible, mechanism for exception handling isto call a
function. This function needs context in which to work, so access to some working
dataisrequired. The function may also need to be handed some data about the
exception raised: at |east the exception number and some optional parameters.

The exception handler receives a data argument which is avalue that was registered
with the handler and points to context information. It also receives an
exception_number which identifies the exception taken, and an error code which
contains any additional information (such as a memory fault address) needed to
handle the exception. Returning from the function will allow the thread to continue.

Exception handlers may be either global or per-thread, or both, depending on

4 n eCos Reference Manual eCos

eCos kernel overview

configuration options. If exceptions are per-thread, it is necessary to have an
exception handler attached to each thread.

Interrupts

Interrupts are asynchronous events caused by external devices. They may occur at any
time and are not associated in any way with the thread that is currently running.

The handling of interruptsis one of the more complex areasin RTOS design, largely
becauseit isthe least well defined. The ways in which interrupt vectors are named,
how interrupts are ddlivered to the software and how interrupts are masked are all
highly architecture- (and in some cases board-) specific. The approach taken in eCos
is to provide a generalized mechanism with sufficient hooks for system-specific code
to be inserted where needed.

Let us start by considering the issue of interrupt vectors. Hardware support differs
greatly here: from the Intel Architecture and the 680X 0 having support for vectoring
individual interruptsto their own vectors, to most RISC architectures that only have a
single vector. In thefirst caseit is possible to attach an | SR directly to the vector and
know that it need only concern itself with the device in question. In the second case it
is necessary to determine which device is actually interrupting and then vector to the
correct ISR. Where thereis an external interrupt controller, it will be possible to query
that and provide what is essentially a software implementation of hardware vectoring.
Otherwise the actual hardware devices must be tested, by calling the ISRs in turn and
letting them make the determination. Sinceit is possible for two devices to interrupt
simultaneoudly, it is necessary to call al | SRs each time an interrupt occurs.

Interrupt masking has a similar variety of support. Most processors have asimple
interrupt mask bit in a status register. The 680X0 has seven levels of masking. Any
board with ainterrupt controller can be programmed to provide similar multi-level
masking. It is necessary to keep the interrupt masking mechanism simple and
efficient, and use only architectural support. The cost of manipulating an on-board
interrupt controller may be too high. However, individual device drivers may want
access to their individual mask bitsin the interrupt controller, so support for this must
be provided.

Most of the infrastructure necessary for a (somewhat) portable treatment of interrupts

isimplemented in the eCos Hardware Abstraction Layer (HAL), which is documented
in “The eCos Hardware Abstraction Layer (HAL)” on page 66.

eCos

eCos Reference Manual n 5

eCos kernel overview

Counters, clocks, alarms and timers

If the hardware provides a periodic clock or timer, it will be used to drive
timing-related features of the system. Many CPU architectures now have built in timer
registers that can provide a periodic interrupt. This should be used to drive these
features where possible. Otherwise an external timer/clock chip must be used.

We draw adistinction between Counters, Clocks, Alarms and Timers. A Counter
maintains a monotonically increasing counter that is driven by some source of ticks. A
Clock isacounter driven by aregular source of ticks (i.e. it countstime). Clocks have
aresolution associated with them. A default system Clock is driven by the periodic
interrupt described above, and tracks real-time. Other interrupt sources may drive
other Countersthat may or may not track real-time at different resolutions. Some
Counters may be driven by aperiodic events and thus have no relation to real-time at
all.

An Alarm is attached to a Counter and provides a mechanism for generating
single-shot or periodic events based on the counter’'s value. A Timer issimply an
Alarm that is attached to a Clock.

The system (including the kernel) represents time in units of ticks. These are
clock-specific time units and are usually the period of the timer interrupt, or amultiple
thereof. Conversion of ticks into conventional time and date units should occur only
when required vialibrary functions. Equivalence between Clock time and real-time
can be made with an RTC (real-time clock), NTP (network time protocol) or user
input.

The representation of the current tick count needs to be 64 bit. This requires either
compiler support for 64 bit integers, or assembly code. Even at the extreme of al ns
tick (tickswill typicaly be >1ms), this gives a 584 year rollover period.

The Clock APl and configuration options that affect clock, counter and alarm
behavior are described in detail in “Counters, clocks and alarms” on page 34.

6 n eCos Reference Manual eCos

A tour of the kernel sources

A tour of the kernel sources

This description takes the form of atour around the sources explaining their structure
and describing the functionality of each component.

The kernel is divided into two basic parts, the largely machine independent partsin
Cygnus/ eCos/ packages/ ker nel / vi_3_x, and the architecture- and platform-specific
parts that comprise the Hardware Abstraction Layer (HAL) in

Cygnus/ eCos/ packages/ hal . These will be described separately. Also note that the
HAL isdescribed in great detail in its own chapter (see “ The eCos Hardware
Abstraction Layer (HAL)” on page 66).

Kernel headers

Kernd header files (in Cygnus/ eCos/ packages/ kernel / v1_3_x/i ncl ude) provide
external interfaces and configuration control for the various kernel objects. In genera
there is an include file for each major kernd class. Those header files having to do
with configuration live in the pkgconf subdirectory.

The base name of a header file and the source file that implementsiit are usually the
same. So, for example, the member functions defined in sched. hxx are implemented
in sched. cxx. For anumber of classes there are also header filesthat define inline
functions, for example sched. i nl .

There are some kernel objects that are implemented using C++ templates to allow

eCos

eCos Reference Manual n 7

A tour of the kernel sources

codere-useinfuture; it is not intended that these template classes be used generally by
applications. The appropriate concrete kernel classes should be used instead.

Now we examine the files one by one for reference:
i ncl ude/ bi t map. hxx
Bitmap scheduler definition. See source file sched/ bi t map. cxx

ncl ude/ cl ock. hxx,

ncl ude/ cl ock. i nl
Counter, clock and alarm functions. See source file common/ ¢l ock. cxx

ncl ude/ di ag. h
Diagnostic routines. See sourcefilet race/ di ag. ¢
ncl ude/errors. h

Kernel error codes. See source file common/ except . cxx

ncl ude/ except . hxx

Exception handling.
ncl ude/ f 1 ag. hxx

Flag synchronization objects. See source file sync/ f | ag. cxx
ncl ude/instrmmt. h

Instrumentation. See source filei nst r mt/ meni nst . cxx

ncl ude/ i ntr. hxx
Interrupts. See sourcefileintr/intr. cxx
ncl ude/ kapi . h,

ncl ude/ kapi dat a. h
Native 'C' API to the kernel. See sourcefile conmon/ kapi . cxx
ncl ude/ ktypes. h
Kernd types.
nclude/llistt. hxx
A simple doubly linked-list template class used elsewhere in the kernel.
ncl ude/l ottery. hxx
Not used.L ottery scheduler implementation. See sourcefile sched/ | ot t ery. cxx

ncl ude/ nbox. hxx,

ncl ude/ nboxt . hxx,
ncl ude/ mboxt 2. hxx,

ncl ude/ nboxt .inl,

8 n eCos Reference Manual eCos

A tour of the kernel sources

i ncl ude/ mboxt 2. i nl

M essage boxes. See source file sync/ nbox. cxx; mboxt . hxx and nmboxt 2. hxx and
mboxt . i nl and mboxt 2. i nl implement the underlying template function.

NOTE Thefileswith a2 suffix are used by default and provide precise uI TRON
semantics.

i ncl ude/ menfi xed. hxx,
i ncl ude/ menpool t. hxx,
i ncl ude/ menpol t 2. hxx,
i ncl ude/ menpool t.inl,
i ncl ude/ menpol t2.inl,
i ncl ude/ nfi xi npl . hxx,
i ncl ude/ nfixinpl.inl

Fixed-block allocation memory pools. See source file ment menf i xed. cxx;
mempoolt[2] and mfiximpl are athread-safety template function and underlying
memory manager respectively.

NOTE Thefileswith a2 suffix are used by default and provide precise uI TRON

semantics.

i ncl ude/ menvar . hxx,

i ncl ude/ menpool t. hxx,

i ncl ude/ menpol t 2. hxx,

i ncl ude/ menpool t.inl,

i ncl ude/ menpol t2.inl,

i ncl ude/ mvari npl . hxx,

i ncl ude/ mvari npl .inl

Variable-block allocation memory pools. See source file ment nenvar . cxx;
mempoolt[2] and mvar are athread-safety template function and underlying
memory manager respectively.

NOTE Thefilt_aswith a 2 suffix are used by default and provide precise uI TRON

semantics.

i ncl ude/ m queue. hxx
Multi-level queue scheduler. See source file sched/ m queue. cxx

i ncl ude/ mut ex. hxx
Mutexes. See source file sync/ nut ex. cxx

i ncl ude/ sched. hxx,

i ncl ude/ sched. i nl

eCos

eCos Reference Manual n 9

A tour of the kernel sources

General scheduler functions. See source file sched/ sched. cxx
i ncl ude/ sema. hxx,
i ncl ude/ sema2. hxx
Semaphores. See sourcefilessync/ cnt _sem cxx and sync/ bi n_sem cxx for
counting or binary semaphores respectively.
NOTE ThefiI(_aWith a2 suffix is used by default and provides precise U TRON
semantics.
i ncl ude/ t hr ead. hxx,
i ncl ude/thread.inl
Threads, regardless of scheduler. See common/ t hr ead. cxx

Kernel source files

The kernel source directory (Cygnus/ eCos/ packages/ kernel /v1_3_x/src)is
divided into a number of sub-directories each containing the source filesfor a
particular kernel subsystem. These sources divide into two classes: those that are
generic to al configurations, and those that are specific to a particular configuration.

Sched subdirectory

sched/ sched. cxx

This contains the implementation of the base scheduler classes. The most
important function hereis Cyg_Schedul er: : unl ock_i nner () which runs DSRs
and performs any rescheduling and thread switching.

sched/ bi t map. cxx
This contains the bitmap scheduler implementation. It represents each runnable

thread with a bit in a bitmap. Each thread must have a unique priority and thereis
astrict upper limit on the number of threads allowed.

sched/ m queue. cxx

This contains the multi-level queue scheduler implementation. It implements a
number of thread priorities and is capable of timeslicing between threads at the
same priority. This scheduler can also support priority inheritance.

sched/l ottery. cxx

This contains alottery scheduler implementation. Thisimplements a CPU share
scheduler based on threads holding anumber of lottery tickets. At the start of each
time quantum, arandom number is generated and the thread hol ding the matching
ticket is scheduled. Compensation tickets and ticket donation allow fair sharing

10 n eCos Reference Manual eCos

A tour of the kernel sources

for 1/0 bound threads and an equivalent mechanism to priority inheritance.

NOTE Thisscheduler isexperimental, and is meant to test the behavior of other parts
of the kernel with anon-orthodox scheduler. It is not meant to be used for real
applications. It is currently under development and is incomplete and
unusable.

Common subdirectory

common/ t hr ead. cxx

Thisimplements the basic thread classes. The functions in this file implement the
basic thread controls to deep and wake threads, change priorities and delay and
time-out. Also defined hereisthe idle thread that runs when there is nothing else
to do.

common/ ¢l ock. cxx

Thisimplements the counter, clock and alarm functions. Also defined hereis the
system real-time clock that is used to drive timeslicing, delays and time-outs.

conmon/ kapi . cxx

Thisimplements a C API to the basic kernel functions.
conmon/ mentpy. c,
common/ nenset . ¢

Standard ANSI memcpy and memset operations; these are here because the
compiler may invoke them for structure operations regardless of the presence of a
Clibrary.

Interrupt subdirectory

intr/intr.cxx

Thisimplements the Interrupt class. Most of this code is concerned with posting
and calling DSRs. The remainder of the interrupt handling code is machine
specificand isin hal _i ntr. cxx inthe HAL directory.

Synchronization subdirectory

sync/ mut ex. cxx

This contains the implementation of mutexes and condition variables. M utexes
can optionally be configured to use a priority inheritance mechanism supplied by
the scheduler.

sync/ cnt _sem cxx
This contains the implementation of counting semaphores.

sync/ cnt _sen®. cxx

eCos eCos Reference Manual n 11

A tour of the kernel sources

This contains the alternate implementation of counting semaphores which
implements precise ul TRON semantics.

sync/ bi n_sem cxx
This contains the implementation of binary semaphores.

sync/ mbox. cxx

This contains wrapper functions for a message box of (void *) values. The
implementation is the template defined in i ncl ude/ mboxt . hxx which
i ncl ude/ mboxt . i nl implements in turn. Message boxes exist in the kernel
specifically to support I TRON compatibility.

sync/ fl ag. cxx

This contains the implementation of flag objects. Flag objects exist in the kernel
specifically to support uI TRON compatibility.

Memory management subdirectory

mem nmenfi xed. cxx

This contains the wrapper functions for a fixed-block allocation memory
manager. The actual implementation isin two parts. i ncl ude/ nf i xi npl . hxx
implements the fixed-block memory management algorithms, and template

i ncl ude/ menpool t . hxx implements thread safety and waiting for memory
management classes. These are combined in nenf i xed. cxx. Memory pools exist
in the kernel specifically to support LI TRON compatibility.

mem nmenvar . cxx

This contains the wrapper functions for a variable-block allocation memory
manager. The actual implementation isin two parts. i ncl ude/ mvar i npl . hxx
implements the variable-block memory management algorithms, and template

i ncl ude/ menpool t . hxx implements thread safety and waiting for memory
management classes. These are combined in menvar . cxx. Memory pools exist in
the kernel specifically to support LI TRON compatibility.

Instrumentation subdirectory

i nstrmmt/ mem nst. cxx

This contains an implementation of the instrumentation mechanism that stores
instrumentation records in a circular buffer in memory. The size of this buffer is
configurable. The instrumentation flags mechanism allows the generation of
instrumentation records to be controlled on a per-record basis. The header file
cyg/ kernel /i nst r mt . h contains macros to generate instrumentation records in
various places, and may be configured to only generate instrumentation records
where required.

12 n eCos Reference Manual eCos

A tour of the kernel sources

instramt/ nul | i nst. cxx

This contains an implementation of the instrumentation mechanism that does
nothing. By substituting its object filenul I i nst . o for meni nst . o in abuild, the
instrumentation mechanism may be disabled without recompiling.

Trace subdirectory

trace/ si npl e. cxx

This contains an implementation of the trace and assert mechanisms that output
textual messages via a set of externally defined functions. These are currently
supplied by the codeint r ace/ di ag. ¢ but may be supplied by adevice driver in
the future.

trace/ fancy. cxx
This contains a (fancier) implementation of the trace and assert mechanisms that
output textual messages viaa set of externally defined functions. These are
currently supplied by the codeintrace/ di ag. ¢ but may be supplied by a device
driver in the future.

This more elaborate view was introduced mainly to validate the trace and
assertion macros during development.

trace/ null.cxx

This contains an implementation of the trace and assert mechanisms that do
nothing. By substituting its object file nul I . o for si npl e. o in abuild, the trace
mechanisms may be disabled without recompiling.

trace/diag.c

This contains a number of diagnostic routines that use the HAL supplied
diagnostic output mechanism to format and print strings and numbers. Thereis
currently no formatted output.

trace/tcdiag.c

This contains an implementation of the testing internal API which uses the
kernel’s diagnostic routines to perform output.

Sload subdirectory

This contains the sources of asimple S-Record loader that may be used in aROM for
various microprocessor development boards to download code via a serial port.

HAL source files

The HAL isdivided into architecture- and platform-specific files. For each
architecture supported, there is an ar ch directory, containing files generic to that

eCos eCos Reference Manual n 13

A tour of the kernel sources

architecture, and apl at f or mdirectory, containing files specific to each platform
supported.

Amongst the architectures supported are: the PowerPC, the Tx39 and the MN10300.
To find the code corresponding to each architecture, substitute “powerpc”, “mips’ and
“mn10300”, respectively, for “ARCH” in the following file descriptions. Similarly
substitute the appropriate platform name representing your development board for
“PLATFORM”.

Architecture files

ARCH ar ch/v1_3_x/incl ude/ basetype. h

Thisfileisused to define the base architecture configuration such as endianness
and word size.

ARCH arch/v1_ 3 x/include/hal _arch.h
Thisfile contains macros that implement various architecture-specific functions.
The most important macros here are the thread context initialization and switch
macros that are used to implement multithreading.
ARCH arch/v1_3_x/include/hal _intr.h
Thisfile contains the HAL support for interrupt management and clock support.
ARCH arch/v1_3 x/include/hal _io.h
Thisfile contains the HAL support for accessing hardware registers. It provides a
portable API that allows more generic device driversto be written.
ARCH ar ch/v1_3_x/include/ hal _cache. h
Thisfile contains macros to control any caches that may be present.
ARCH arch/v1_3 x/incl ude/ ARCH stub. h
Thisfile contains architectural information for a GDB stub, such as the register
layout in a GDB packet.
ARCH arch/v1_3_x/src/vectors.S

Thisisan assembly code file that contains the code to handle interrupt and
exception vectors. Since system reset can also be considered an exception, thisis
handled here also. Interrupts are currently handled by placing a stub routine in the
hardware vector which calls a Vector Service Routine via an indirection table.
ThereisaAPI to alow user-defined VSRs to beinstalled. The default VSR reads
the interrupt controller registers and decodes the interrupt source into an offset
into afurther table of interrupt service routines. It also handles interrupt cleanup,
which may result in the execution of deferred service routines (DSRs) and the
preemption of the current thread.

ARCH arch/v1l 3 x/src/context.S

14 n eCos Reference Manual eCos

A tour of the kernel sources

If present, thisis an assembly code file that contains the code to support thread
contexts. The routines to switch between various contexts, aswell asinitidize a
thread context may be present in thisfile.

ARCH arch/v1l 3 x/src/hal _msc.c

Thisfile contains the implementation of various miscellaneous HAL routines that
are needed by the kernel or C++ runtime.

ARCH arch/v1_3_x/src/ ARCH stub.c

Thisfile contains the architectural part of a GDB stub. This deals with
CPU-specific details of the stub, such as the setting of breakpoints and translating
exception datainto signals that GDB understands.

ARCH arch/v1l 3 x/src/ARCH. I d

Thisfileisthe linker script. During preprocessing it includes linker script
fragments that define the memory layout.

Platform files

ARCH PLATFORM v1_3_x/incl ude/ hal _di ag. h

Thisfile contains the definitions of macros that support the HAL diagnostic
output mechanism.

ARCH PLATFORM v1_3_x/include/plf_stub.h

Thisfile contains a set of macros that allow the common GDB stub code to access
the platform-specific minimal serial driver functions.

ARCH PLATFORM v1_3_x/src/ hal _diag.c
Thisfile contain the implementation of the HAL diagnostic output mechanism.
ARCH PLATFORM v1_3 x/src/plf_stub.c

Thisfile containsaminimal seria driver for the target platform that is used by the
GDB stub.

ARCH PLATFORM v1_3_x/ src/ PLATFORM S

Thisisan assembler file that contains any platform-specific code. It often contains
platform initiaization code called from vectors.S.

eCos eCos Reference Manual n 15

A tour of the kernel sources

Part Il: Kernel APIs

16 n eCos Reference Manual eCos

Requirements for programs

Requirements for programs

eCos programs do not have to satisfy any unusua requirements, but there are always
some differences between a program written for a real -time operating system as
opposed to one written for a time sharing, virtual memory system like UNIX or
Windows NT.

This chapter contains checklist of things to remember when writing eCos programs.

cyg_user_start()

The entry point for eCos user programsisusually cyg_user _start () instead of
mai n() , although mai n() can be used if the ISO C library package is sel ected.
Complete detail on the start-up sequence is given in “ System start-up” on page 21.

Necessary headers

Any program which uses eCos system calls must have the following line at the top of
thefile:

#i ncl ude <cyg/ ker nel / kapi . h>
and the programmer must make sure that cyg/ ker nel / kapi . h isavailable in the
compiler include path. This can be done by setting the C_INCLUDE_PATH
environment variable or by including the -1 flag on the compiler command line.

eCos

eCos Reference Manual n 17

Requirements for programs

Necessary link instructions

The eCos configuration and building process (described in Getting Sarted with eCos
and eCos User’s Guide) builds asinglelibrary, 1 i bt ar get . a, which contains the
selected eCos components. Thel i bt ar get . a library does not contain any user
libraries: If you put some of your source in libraries, you will have to explicitly
include those libraries in the linking instruction.

Y ou also need to link to the GNU C Compiler runtime support library (I i bgcc. a).

Y ou should not link to the standard C++ library. This can be achieved with the
-nostdlib option.

Youshouldonly linktoli bt arget.aandl i bgcc. ausing thelinker scripttarget . | d
provided with eCos. The command line for linking should look like

gcc [options] [object files] -Ttarget.ld -nostdlib

Interrupt and exception handlers

In eCos a distinction is made between exceptions and interrupts.
exceptions

are the result of some action by the currently executing code. Examples of
exceptions are divide by zero, illegal instruction, bad memory access, €tc.

interrupts

aretheresult of asignal source which is conceptually asynchronous with the
currently executing code. Examples of interrupts sources are the real-time clock,
external and on chip peripheras and so forth.
Thisdistinction is made in the eCos hardware abstraction layer (HAL) to provide a
cleaner and more portable mechanism for installing interrupt handlers and exception
handlers. Individual hardware platforms can have different ways of naming and
handling interrupts, which iswhy this abstraction layer was chosen.
Interrupts and exceptions are both associated with vectors, which are labeled by vector
numbers (see “ Exception handling” on page 31 and “Interrupt handling” on page 32).
There are distinct spaces for exception and interrupt vectors. These are called
“exception vector numbers’ and “interrupt vector numbers’. System callswhich
install exception handlers use the exception vector number, and the system callswhich
install interrupt handlers use the interrupt vector number to specify which interrupt or
exception should be handled by the handler.
The details of the vector layout depend on the microprocessor and interrupt controller,
and are documented in the relevant API sections.

18 n eCos Reference Manual eCos

Interrupt handlers are actually a pair of functions, one of which (the interrupt service
routing, or ISR) is executed immediately and runs with that interrupt disabled. Since
interrupts are disabled for the duration of the ISR, the ISR should be very brief and
should not use any system services.

After the ISR exits, but before the kernel scheduler isinvoked again, a delayed service
routine (DSR) will be invoked. It executes with scheduling disabled, but with
interrupts enabled, so that further invocations of the same DSR can be queued. The
DSR can use some producer-side system calls, but it should be carefully crafted to
avoid using any call that might put itsthread to sleep. One of the few examples of safe
callsiscyg_semaphor e_post () ; the non-blocking versions of some system calls are
adso safe. A call that isunsafeiscyg_mut ex_| ock(), sinceit will block if the mutex is
aready locked by another thread.

Finally, eCos has a formalism for installing low level handlers which bypass the
kernel mechanisms described above. A program can install a vector service routine
(VSR) which will be invoked instead of the kernel’s usual exception or interrupt
handling. The VSR will typically be written in assembly language.

V SRs are associated with vector numbers in the exception space, just like exception
handlers (although there are some variations — architectures in which there are no
exceptions in the eCos sense). The main difference between V SRs and exception
handlersis that V SRs bypass the kernel's usual mechanisms.

Memory allocation

Most eCos system calls expect you to pass the address of pre-allocated memory for
the objects created in that system call. Thisis frequently the preferred way of doing
things for embedded applications, where programmers want to allocate all memory
statically and have fine control over that resource.

In contrast, some eCos system calls also allow a NULL pointer to be passed. In such a
case the kernel will allocate the memory or select default size. This feature is not
supported in the current release, and awarning flag is placed in the documentation for
those routines (like cyg_t hread_creat e()).

eCos provides dynamic memory allocation, based on memory pools, a useful and
flexible approach to memory management inspired by the WITRON compatibility
layer. These are described in “Memory pools’ on page 42.

If you configure your system to use the Standard C Library you can also use the
standard mal | oc() library call.

eCos

eCos Reference Manual n 19

Requirements for programs

Assertions and bad parameter handling

This section describes how the eCos kernel and basic packages behave when system
calls are invoked with bad parameters.

In eCos, the basic kernel assertion behavior is configuration-dependent.

By default, assertions are turned off in the kernel. If the kernel is configured to turn
them on, the kernel will make basic assertions, such as checking for invalid
parameters when system calls are invoked. If an assertion fails, the kernel will print a
message to the diagnostic output channel and stop executing.

If the kernel is configured with assertions disabled (usually when the application has
been thoroughly debugged), it will not do any checking.

The configuration sections referenced above also describe the use of preconditions,
postconditions and loop invariants. These are no different from ordinary assertions,
but they are used in specialized circumstances, and the programmer would wish to
select their presence individually.

20 n eCos Reference Manual eCos

System start-up

System start-up

We describe here the steps performed by eCos upon start-up, mentioning how a
programmer can introduce custom start-up routines.

System start-up — the HAL

The HAL (Hardware Abstraction Layer, see “The eCos Hardware Abstraction Layer
(HAL)” on page 66) is the eCos package which contains all start-up code. Its start-up
procedureisoutlined in detail in “HAL startup” on page 79, but the main steps can be
summarized here:

1. TheHAL initializesthe hardware, coordinates with the ROM monitor, and
performs diagnostics.

2. TheHAL invokes all static and global C++ constructors.

3. TheHAL jumpstocyg_start (), which has the following prototype:
void cyg_start(void)

System start-up — cyg_start()

cyg_start () isthe core of the start-up mechanism. The default definitionisin
infra/current/src/startup. cxx

eCos eCos Reference Manual n 21

System start-up

It calls, inturn,

cyg_prestart()

cyg_package_start ()

cyg_user_start()
and then starts the eCos scheduler if the system has been configured to have a kernel
and scheduler.
Y ou can override the default cyg_start () routine by providing your own function by
the same name with the following prototype:

void cyg_start(void)

WARNING Overriding cyg_st art () should rarely, if ever, be done. The functions
cyg_prestart() andcyg_user_start () described just below allow enough
flexibility for installing user initialization code safely for almost all
applications.

NOTE If you are supplying your own definition of this function from a C++ file,
make sureit has“C” linkage.

System startup — cyg_prestart()

Thedefault cyg_prestart () function does not do anything; it is meant to be
overwritten if the programmer needs to do any initialization before other system level
initialization.
Y ou can overridethedefault cyg_prestart () routine by providing your own function
by the same name with the following prototype:

voi d cyg_prestart(void)

NOTE If you are supplying your own definition of this function from a C++ file,
make sureit has“C” linkage.

System startup — cyg_package_ start()

Thecyg_package_start () allowsindividual packagesto do their initialization
before the main user program is invoked.

Two of the packages shipped with this release of eCos have code in the default
cyg_package_start () :the WITRON and the SO standard C library compatibility
packages (see “UITRON API” on page 51 and “ C and math library overview”

on page 146).

The infrastructure package has configuration options

CYGSEM _START_UlI TRON_COMPATI BI LI TY and

CYGSEM _START | SO _C_COWPATI BI LI TY which control specialized

22 n eCos Reference Manual eCos

System start-up

initialization.
Y ou can override the default cyg_package_start () routine by providing your own
function by the same name with the following prototype:

voi d cyg_package_start(void)

but you should be careful to initialize the default packages (if you are using them). An
example user-supplied function might look like:

voi d cyg_package_start(voi d)

{
#i f def CYGSEM _START_U TRON_COWPATABI LI TY
cyg_uitron_start(); /* keep the pl TRON initialization */
#endi f

ny_package_start(); /* nmake sure | initialize ny package */

}

NOTE If you are supplying your own definition of this function from a C++ file,
make sureit has“C” linkage.

System startup — cyg_user_start()

Thisisthe normal entry point for your code. Although a default empty versionis
provided by eCos, thisisagood place to set up your threads (see “ Thread operations’
on page 27).

If you are not including the I SO standard C library package then there will not be a
mai n() function, so it becomes mandatory to provide this function (see“C library
startup” on page 153).

To set up your own cyg_user _start () function, create afunction by that name with
the following prototype:

voi d cyg_user_start(void)
When you return control from cyg_user _start (), cyg_start () will theninvokethe
scheduler, and any threads you created and resumed in cyg_user _start () will be

executed. The preferred approach isto allow the scheduler to be started automatically,
rather than to start it explicitly incyg_user _start ().

CAUTION Remember that cyg_user _start () isinvoked before the scheduler (and
frequently the scheduler isinvoked asthe last stepincyg_user _start()), SO
it should not use any kernel services that require the scheduler.

NOTE If you are supplying your own definition of this function from a C++ file,
make sureit has“C” linkage.

eCos eCos Reference Manual n 23

Native kernel C language API

Native kernel C language API

The eCoskernel, like many other real-time kernels, is alibrary to which the
programmer links an application. System calls resemble library API calls, and thereis
no trap mechanism to switch from user to system mode.
We present here the eCos kernel API and the APIsfor other kernels provided as
compatibility layers on top of eCos.

Since this API sits on top of a configurable system, the semantics are only weakly
defined. The exact semantics and even the AP itself depend on the configuration. For
exampleif returned error codes were supported thiswould change the prototype of the
functions. The semantics given in this chapter describe the default configuration.
As mentioned above, all source files which use the kernel C API should have the
following #i ncl ude statement:

#i ncl ude <cyg/ ker nel / kapi . h>
at the head of thefile.

Types used in programming eCos

We now describe the types defined for use with eCos. These are available to programs
that include kapi . h.

Most of these types are meant to be opagque — in other words, programmers do not
need to know (and probably should not know) how they are defined. But the types that

24 n eCos Reference Manual eCos

Native kernel C language API

are numeric are marked, since it can be useful to use comparison operators.

The definitions for these types can be found in the installed tree, in thefile
i ncl ude/ cyg/ ker nel / kapi . h.

The eCos kerndl uses the following naming convention for types.
Types that can be treated as completely opaque usually have _t suffix.

Types for which it is necessary to know the implementation do not havea_t
suffix.

cyg_addrword t

A type which islarge enough to store the larger of an address and a machine word.
Thisisused for convenience when a function is passed data which could be either a
pointer to a block of data or a single word.

cyg_handle_t

A handleis avariable used to refer to eCos system objects (such as athread or an
aarm). Most eCos system calls that create system objects will return ahandlethat is
used to access that object from then on.

cyg_priority _t

A numeric type used to represent the priority of athread, or the priority of an interrupt
level. A lower number means a higher (i.e. more important) priority thread.

cyg _code t

A numeric type used for various error or status codes, such as exception numbers.

cyg_vector_t

A numeric type used to identify an interrupt vector. Itsvalue is called the interrupt
vector id. Thistypeis used for both ISR vector ids and V SR vector ids.

cyg_tick count t

A numeric type used to count counter ticks. The resolution and other details regarding
tick quantities depend on the configuration, but thisis a 64 bit type, and no matter
what configuration is chosen it should still last for centuries before it overflows.

cyg_bool t

A boolean type whose values can be false (0) or true (1).

eCos

eCos Reference Manual n 25

Native kernel C language API

cyg_thread entry t

A function type for functions that are entry points for threads. It is used in the thread
creation call cyg_thread create().

To help write thread entry point functions, here is how cyg_thread_entry t is defined:
typedef void cyg thread_entry_t(void *);

Examples of thread functions can be found in the programming tutorial in Getting
Sarted with eCos.

cyg_exception_handler_t

A function type used for installing exception handlers. It is defined as:

typedef void cyg_exception_handl er_t(
cyg_addrword_t data,

cyg_code_t exception_nunber,
cyg_addrword_t info

)

cyg_thread, cyg_interrupt, cyg counter, cyg_clock,
cyg_alarm, cyg _mbox, cyg mempool var, and
cyg_mempool_fix
These types are of the appropriate size to contain the memory used by the respective
kernel objects. These types are only used in the corresponding create call where the

programmer allocates the memory for the object and passes the address to the kernel.
After creation the provided handle is used to reference the object.

cyg_mempool_info
Contains information about a memory pool.

typedef struct {

cyg_int32 total mem

cyg_int32 freenem

voi d *base;

cyg_int32 size;

cyg_i nt 32 bl ocksi ze;

cyg_int32 maxfree; // The largest free bl ock
} cyg_nenpool _info;

cyg_sem _t, cyg_mutex_t, and cyg cond t

These types are of the appropriate size to contain the memory used by their respective
kernel objects. These objects are aways referred to by a pointer to an object of this

type.

26 n eCos Reference Manual eCos

Native kernel C language API

cyg VSR t,cyg ISR t,and cyg DSR t

These are function types used when vector, interrupt and delayed service routines are
installed.
typedef void cyg VSR t();
typedef cyg_uint32 cyg_ ISR t(cyg vector_t vector,
cyg_addrword_t data);
typedef void cyg DSR t(cyg_uint32 vector,
cyg_ucount 32 count,
cyg_addrword_t data);

cyg_resolution t

Stores the resolution of a clock. The resolution is defined to be (dividend/divisor)
nanoseconds per tick.

typedef struct { cyg_uint32 dividend;
cyg_uint32 divisor; }
cyg_resolution_t;

cyg_alarm_t

The function type used for alarm handlers.

typedef void cyg_alarmt(cyg _handle_t alarm
cyg_addrword_t data);

Thread operations

voi d cyg_schedul er _start(void)
Starts the scheduler with the threads that have been created. It never returns. The
scheduler has been chosen at configuration time. eCos currently ships with three
schedulers: abitmap scheduler, a multi-level scheduler (selected by default), and an
experimenta “lottery” scheduler which is currently incomplete and unusable.
The configuration tool can be used to select between schedulers. The configuration
options are
CYGSEM_SCHED_BI TMAP, CYGSEM_SCHED_M_QUEUE and
CYGSEM SCHED LOTTERY.

NOTE Interrupts are not enabled until the scheduler has been started with
cyg_schedul er _start().

voi d cyg_schedul er _| ock(void)
L ocks the scheduler so that a context switch cannot occur. This can be used to protect
data shared between athread and a DSR, or between multiple threads, by surrounding
the critical region with cyg_schedul er _I ock() and cyg_schedul er _unl ock() .

eCos eCos Reference Manual n 27

Native kernel C language API

voi d cyg_schedul er _unl ock(void)
Unlocks the scheduler so that context switching can occur again.
voi d cyg_thread_create(
cyg_addrword_t sched_info,
cyg_thread_entry_t *entry,
cyg_addrword_t entry data,
char *nhame,
voi d *stack base,
cyg_ucount 32 stack size,
cyg_handl e_t *handle,
cyg_thread *thread)
Creates athread in a suspended state. The thread will not run until it has been resumed
with cyg_t hread_resume() and the scheduler has been started with
cyg_schedul er _start().
Here is a description of the parametersof cyg_t hread_create():
sched_info
Information to be passed to the scheduler. For ailmost all schedulersthisisa
simple priority value, and you can simply pass a non-negative integer when you
create the thread. Even when this holds, some schedulers may have restrictions on
how priorities can be used. For example, the bitmap scheduler can onlyhave one
thread at each priority, so if an aready-occupied priority slot is quoted, the next
free ot of lower priority is chosen.
entry
A user-supplied function: it is aroutine that begins execution of the new thread.
This function takes a single argument of type cyg_addrword_t, whichisusualy a
pointer to a block of data, which allows cyg_schedul er _start () to passdatato
this particular thread.
Hereis atypedef for the ent r y function:
typedef void cyg thread_entry_t(cyg_addrword_t);
entry data
A datavalue passed to the ent r y function. This may be either a machine word
datum or the address of ablock of data.
nanme
A C string with the name of this thread.
st ack_base

The address of the stack base. If thisvalueisNULL then cyg t hread_create()
will choose a stack base.

28 n eCos Reference Manual eCos

Native kernel C language API

NOTE Passing astack base of NULL is not supported in thisrelease. Y ou must pass a
real address for the stack base.
stack_si ze
The size of the stack for thisthread. If thisis 0, the default stack size will be used
for this thread.
NOTE Passing astack size of 0 isnot supported in thisrelease. Y ou must pass areal
stack size.
handl e
cyg_thread_create() returnsthethread handlein thislocation.

t hr ead

The thread housekeeping information is placed in the memory pointed to by this
parameter. If this pointer is NULL then the memory will be allocated.

NOTE PassingaNULL valuefor the thread data structure address is not supported in
thisrelease. Y ou must pass a valid address.

void cyg_thread_exit(void)
Exits the current thread. At present this simply puts the thread into suspended state.
voi d cyg_t hread_suspend(
cyg_handl e_t thread)
Suspendsthet hr ead. A thread may be suspended multiple times, in which case it
will need to be resumed the same number of times before it will run.
voi d cyg_thread_resume(
cyg_handl e_t thread)
Resumest hr ead. If athread has been suspended multiple timesit will need to be
resumed the same number of times before it will run. Threads are created in a
suspended state and must be resumed before they will run.
void cyg_thread_yield(void)
Yields control to the next runnable thread of equal priority. If no such thread exists,
then this function has no effect.
void cyg_thread_kill(
cyg_handl e_t thread)
Killst hr ead.
cyg_bool _t cyg_thread_del et g(
cyg_handl e_t thread)
Kills thread and deletes it from the scheduler. If necessary, it will kill thread first
using cyg_t hread_ki | | (thread). If thread does not terminate in response to the kill
message, this function returns false, indicating failure.

eCos eCos Reference Manual n 29

Native kernel C language API

Thisfunction differsfrom cyg_t hread_ki 11 () (or calling cyg_t hread_exi t ()

for the current thread) by deregistering the thread from the scheduler. As aresult, the
thread handle, thread stack and space passed for the thread housekeeping information
can then be reused. Thisis not the case if just cyg_t hread_ki I 1 () or
cyg_thread_exit () isinvoked for the thread.

NOTE cyg_thread_del et e() only deregistersthe thread from the scheduler, it does
not free up any resources that had been allocated by the thread such as
dynamic memory, nor does it unlock any synchronization objects owned by
the thread. Thisis the responsibility of the programmer. Additionally, unlike
cyg_thread kill(),thecyg_thread _del ete() function cannot be
self-referencing.

EXAMPLE // Delete another thread. This nust be done in a | oop, waiting
/1 for the call to return true. If it returns false, go to sleep
/1l for a while, so that the killed thread gets a chance to run
/1 and conplete its business.
while (!cyg_thread_del et e(<thread_handl e>) {
cyg_thread_del ay(1);

cyg_handl e_t cyg_thread_sel f(void)
Returns the handle of the current thread.
voi d cyg_thread_rel ease(
cyg_handl e_t thread)
Break the thread out of any wait it is currently in. Exactly how the thread returns from
the wait operation, and how, if at all, the break isindicated, depends on the
synchronization object it was waiting on.
cyg_ucount 32 cyg_t hread_new_dat a_i ndex(void)
Allocates a new per-thread data index from those still available. If no more indexes
are available, and assertions are enabled, an assertion will be raised.
voi d cyg_thread_free_data_i ndex(
cyg_ucount 32 index)
Return the per-thread data index to the pool.
CYG_ADDRWORD cyg_t hread_get _dat a(
cyg_ucount 32 index)
Retrieve the per-thread data at the given index for the current thread.
CYG_ADDRWORD *cyg_thread_get _data ptr(
cyg_ucount 32 index)
Return a pointer to the per-thread data at the given index for the current thread. This
should be used with some care since in some future implementation the per-thread
data may be managed by a dynamic mechanism that might invalidate this pointer at

30 n eCos Reference Manual eCos

Native kernel C language API

any time. This pointer should only be considered valid until the next call to the
per-thread data functions.

voi d cyg_t hread_set _dat a(
cyg_ucount 32 i ndex, CYG ADDRWORD data)

Store the datain the per-thread data for the current thread at the given index.

Priority manipulation

void cyg_thread_set_priority(
cyg_handl e_t thread,
cyg_priority_t priority)
Setsthe priority of the given thread to the given value. The smaller the value, the
higher the priority of the thread.
Allowed priorities range between 1 and 64. The values of these parameters are
configuration-dependent because they depend on which scheduler has been selected,
and what value has been configured for the
CYGNUM_KERNEL _SCHED PRI ORI Tl ES configuration parameter (see“ Thread
operations’ on page 27 and “ Option: Number of priority levels’ in Section V").
Thereisalways an idle thread, owned by the kernel, running at
CYG_THREAD M N_PRI ORI TY. Because of this, ordinary threads should never be
run at the lowest priority.
cyg priority_t cyg thread_get _priority(
cyg_handl e_t thread)
Returns the priority of the given thread.
voi d cyg_t hread_del ay(
cyg_tick_count _t delay)
Puts the current thread to sleep for del ay ticks. In a default configuration there are
approximately 100 ticks a second. The actual length of the ticksis given by the
resolution of the real-time clock. See “ Counters, clocks and alarms” on page 34 for
more information on counter resolution.

Exception handling

Exception handlers can beinstalled to deal with various system-level exceptions, such
as alignment errors, resets, timers and so forth. Exception handling is a configurable
feature of eCos and is enabled by default.

Therange of valuesfor the except i on_nunber parameter in the functions below
is hardware-dependent, as are the individual exceptions. See

eCos eCos Reference Manual n 31

Native kernel C language API

hal / ARCH arch/ v1_3_x/i ncl ude/ hal _i ntr for the exception vector definitions
specific to agiven architecture.

The exception handler is afunction of the following type:

typedef void cyg_exception_handl er_t(
cyg_addrword_t data,
cyg_code_t exception_nunber,
cyg_addrword_t info

)
cyg_exception_handler_t isthe type used for functions which are called as aresult of
an exception. It isused in the function cyg_excepti on_set _handl er ().

voi d cyg_exception_set_handl er(
cyg_code_t exception_number,
cyg_exception_handl er _t *new_handler,
cyg_addrword_t hew_data,
cyg_exception_handl er _t **old_handler,
voi d **old data)
Replace current exception handler. This may apply to either the thread, or to a global
exception handler, according to how exception handling was configured (global or
per-thread). The exception may be ignored, or used to specify a particular handler.
voi d cyg_exception_call _handl er(

cyg_handl e_t thread,

cyg_code_t exception_number,

cyg_addrword_t exception info)

Invoke exception handler for the given exception number. The exception handler will
beinvoked with except i on_i nf o asitsthird argument.

Interrupt handling

Interrupt handling is by nature machine-specific. The eCos kernel aimsto provide
efficiency and flexibility in this area, while maintaining a very low interrupt latency.
To alow the programmer direct access to hardware, the semantics and the interface
can vary from one architecture to another.

The interrupt vectors for a given architecture are defined in

hal / ARCH ar ch/v1_3_x/i ncl ude/ hal _i nt r. h where also special semantics and
caveats of the interrupt capabilities would be described.

typedef void cyg VSR t();
typedef cyg_uint32 cyg ISR t(cyg vector_t vector,

32 n eCos Reference Manual eCos

Native kernel C language API

cyg_addrword_t data);

typedef void cyg DSR t(cyg_vector_t vector,
cyg_ucount 32 count,

cyg_addrword_t data);

enum cyg_|I SR results

{

CYG ISR HANDLED = 1, /* Interrupt was handled */
CYG I SR CALL DSR = 2 /* Schedul e DSR */

H

voi d cyg_interrupt_create(

voi d

voi d

voi d

voi d

voi d

cyg_vector _t vector,

cyg_priority_t priority,

cyg_addrword_t data,

cyg ISR t *isf,

cyg _DSR t *dst,

cyg_handl e_t *handle,

cyg_interrupt *intr)

Creates an interrupt object and returns a handle to it. The object contains information
about which interrupt vect or to use and the ISR and DSR that will be called after
the interrupt object is attached. The interrupt object will be allocated in the memory

passed inthei nt r parameter. The interrupt object is not immediately attached; it
must be attached with thecyg_i nterrupt _attach() cal.

cyg_interrupt _del et g(

cyg_handl e_t interrupt)
Detachesthei nt er r upt from the vector and frees the corresponding memory.

cyg_interrupt _attach(

cyg_handl e_t interrupt)
Attachesi nt er r upt .

cyg_interrupt _detach(

cyg_handl e_t interrupt)
Detachesi nt err upt .

cyg_interrupt _get_vsr(

cyg_vector _t vector,
CYg_VSR t **Vsr)
Returns a pointer to the VSR currently installed on vect or .

cyg_interrupt _set_vsr(

cyg_vector _t vector,

eCos

eCos Reference Manual n 33

Native kernel C language API

voi d

voi d

voi d

voi d

voi d

voi d

cyg_i

cyg_i

cyg_i

cyg_i

cyg_i

cyg_i

CYg_VSR t *Vsr)

Setsthe current VSR onvect or . A VSR directly attachesto the hardware interrupt
vector and needs to be written in assembler.

nt errupt _disable(void)

Disables al interrupts.

nterrupt _enabl e(void)

Enables al interrupts.

nt er rupt _mask(

cyg_vector _t vector)

Programs the interrupt controller to stop delivery of interrupts on vect or . On some
architectures this will also disable al lower priority interrupts while on others they
remain enabled.

nt er r upt _unnmask(
cyg_vector _t vector)

Programs the interrupt controller to allow delivery of interrupts on the given interrupt
vector.

nt errupt _acknowl edge(

cyg_vector _t vector)

Should be used from inside an | SR to acknowledge receipt of the interrupt. The
interrupt must be acknowledged. If an interrupt is not acknowledged, the interrupt
may trigger immediately after the ISR returns, causing the ISR to be called againin a
loop.

nt errupt _confi gure(

cyg_vector _t vector,

cyg_bool _t level,

cyg_bool _t up)
On some interrupt controllers the way an interrupt is detected may be configured. The
| evel parameter chooses between level- or edge-triggered interrupts. The up
parameter chooses between high and low level for level triggered interrupts or rising
and falling edges for edge triggered interrupts.

Counters, clocks and alarms

Counters

The counter objects provided by the kernel provide an abstraction of the clock facility
that is generally provided. Application code can associate alarms with counters, where

34 n eCos Reference Manual eCos

Native kernel C language API

an aarm isidentified by the number of ticks until it triggers, the action to be taken on
triggering, and whether or not the alarm should be repeated.

There are two different implementations of the counter objects. The first stores all
darmsin asinglelinked list. The aternative implementation uses a table of linked
lists, with the size of the table being a separate configurable option. A singlelistis
more efficient in terms of memory usage and is generally adequate when the
application only makes use of a small number of alarms. For more complicated
operationsit is better to have atable of lists since this reduces the amount of
computation whenever the timer goes off. Assuming atable size of 8 (the default
value) on average the timer code will only need to check 1/8 of the pending alarms
instead of al of them.

The configuration options which select the counter implementation are

CYA MP_KERNEL COUNTERS_MULTI _LI ST (“Option: Implement counters
using atable of lists” in Section V) and

CYd MP_KERNEL_COUNTERS_SI NGLE LI ST (“Option: Implement counters
using asinglelist”, in Section V).

The following functions can be used to create and manipulate counters:

voi d cyg_count er_creat e(

cyg_handl e_t *counter,
cyg_counter *the counter)

Creates a new counter and placesit in the space pointed to by count er . A counter
stores avalue that isincremented by cyg_count er _ti ck() . Alarms may be attached
to counters, and the alarms will trigger when the counter reaches a specified value.

voi d cyg_count er _del et g(

cyg_handl e_t counter)
Deletes the given counter and frees the corresponding memory.

cyg_tick_count _t cyg_counter_current_val ue(

cyg_handl e_t counter)
Returns the current value of the given counter.

voi d cyg_counter_set _val ue(

cyg_handl e_t counter,
cyg_tick_count _t new_value)
Setsthe counter's value to new _val ue.

voi d cyg_counter _tick(

cyg_handl e_t counter)
Advances the counter by onetick.

eCos

eCos Reference Manual n 35

Native kernel C language API

Clocks

voi d

voi d

voi d

voi d

Clocks are counters which are associated with a stream of ticks that represent time
periods. Clocks have a resol ution associated with them, whereas counters do not.

The most frequently used clock is the real-time clock which serves two special
purposes. First, it is necessary to support clock and alarm related functions such as
cyg_t hread_del ay() . Second, it is needed to implement timeslicing in the mlqueue
and lottery schedulers. If the application does not require either of these facilities, then
it is possible to disable the real-time clock support completely. It is also possible to
disable just timedlicing with the configuration option

CYGSEM _KERNEL_SCHED TI MESLI CE, or just the clock and alarm functions,
using the option CYGFUN_KERNEL _THREADS TI MER..

The real-time clock is available if the configuration option
CYGVAR _KERNEL_COUNTERS CLOCK is defined.

Clock resolution is stored in variables of type cyg_resolution_t (see
“cyg_resolution_t” on page 27).

cyg_cl ock_creat e(

cyg_resol ution_t resolution,
cyg_handl e_t *handle,
cyg_cl ock *clock)

Createsaclock object with thegivenr esol ut i on and placesit in the space pointed
toby cl ock. A clock isacounter driven by aregular source of ticks. For examplethe
system real-time clock is driven by a clock interrupt.

cyg_cl ock_del et e(

cyg_handl e_t clock)
Deletes a clock object and frees the associated memory.

cyg_clock_to_counter(

cyg_handl e_t clock,
cyg_handl e_t *counter)

Converts a clock handle to a counter handle. The counter functions can then be used
with the counter handle.

cyg_cl ock_set _resol ution(

cyg_handl e_t clock,
cyg_resol ution_t resolution)
Changes the resol ution of a given clock object.

cyg_resolution_t cyg_clock_get_resol ution(

cyg_handl e_t clock)

36 n eCos Reference Manual eCos

Native kernel C language API

Returns the resolution of ¢l ock.
cyg_handl e cyg _real _time_cl ock(void)
Returns a handle to the system-supplied real-time clock.
cyg_tick_count _t cyg_current_tine(void)
Returns the real-time clock’s counter. Thisis equivalent to executing the code:

cyg _clock to_counter(cyg real time_clock(), &h),
cyg_counter_current_val ue(h);

Alarms

typedef void cyg_alarmt(cyg_handle_t alarm
cyg_addrword_t data);

cyg_alarm_tisthetype used for functions which are used to handle alarm events. It is
used in thefunction cyg_al arm create().
voi d cyg_al arm creat e(
cyg_handl e_t counter,
cyg_alarmt *alarm fn,
cyg_addrword_t data,
cyg_handl e_t *handle,

cyg_al arm *alarm)
Creates an dlarm object. The dlarm is attached to the count er and is created in the
memory pointed to by al ar m When the alarm triggers, the handler function
al ar nf niscaled andis passed dat a asa parameter. The alarm handler executesin
the context of the function that incremented the counter and thus triggered the alarm.

NOTE If thealarm is associated with the rea -time clock, the alarm handler
al ar nf n will beinvoked by the delayed service routine (DSR) that services
the real -time clock. This meansthat real-time clock alarm handlers (which are
possibly the most frequently used) must follow the rules of behavior for
DSRs. Theserules are outlined in “Interrupt and exception handlers’
on page 18.
voi d cyg_al arm del et e(
cyg_handl e_t alarm)
Disables the alarm, detaches from the counter, invalidates handles, and frees memory
if it was dynamically allocated by cyg_al arm creat e().
void cyg_alarminitialize(
cyg_handl e_t alarm,
cyg_tick_count _t trigger,

eCos eCos Reference Manual n 37

Native kernel C language API

cyg_tick_count _t interval)
Initialize an alarm. This setsiit to trigger at the tick with valuet r i gger . When an
alarm triggers, this event is dealt with by calling the al ar nf n parameter which was
passed when the alarm was created using cyg_al arm create(). If i nt erval is
non-zero, then after the alarm has triggered it will set itself to trigger again after
i nt erval ticks. Otherwisg, if i nt er val iszero, theaarm iswill be disabled
automatically once it has triggered.
voi d cyg_al ar m enabl e(
cyg_handl e_t alarm)
Enables an alarm that has been disabled by calling cyg_al ar m di sabl e().
voi d cyg_al arm di sabl e(
cyg_handl e_t alarm)
Disables an alarm. After an alarm is disabled it will not be triggered unlessit is
subsequently re-enabled by calling cyg_al ar m enabl e() orisreinitialized by calling
cyg alarminitialize().
Note, though, that if a periodic alarm that has been disabled is re-enabled without
reinitializing it will bein phase with the original sequence of alarms. If itis
reinitialized, the new sequence of aarmswill be in phase with the moment in which
cyg alarminitialize() wascaled.

Synchronization

Semaphores

The semaphores defined by the type cyg_sem t are counting semaphores. These
objects are not referred to by handles, but rather by the pointer to the variable in which
the semaphore is created.
voi d cyg_semaphore_init(
cyg_semt *sem,
cyg_ucount 32 val)
Initializes a semaphore. Theinitial semaphore count issetto val .
voi d cyg_senaphor e_destroy(
cyg_semt *sem)
Destroys a semaphore. This must not be done while there are any threads waiting on
it.
voi d cyg_senmaphore_wai t (
cyg_semt *sem)

38 n eCos Reference Manual eCos

Native kernel C language API

If the semaphore count is zero, the current thread will wait on the semaphore. If the
count is non-zero, it will be decremented and the thread will continue running.

cyg_bool _t cyg_senmaphore_trywait(

cyg_semt *sem)
A non-blocking version of cyg_semaphor e_wai t () . This attempts to decrement the
semaphore count. If the count is positive, then the semaphore is decremented and
t r ue isreturned. If the count is zero then the semaphore remains unchanged, and
f al se isreturned, but the current thread continues to run.

cyg_bool _t cyg _senmaphore_tinmed_wait(

cyg_semt *sem,

cyg_tick_count _t abstime)
A time-out version of cyg_semaphor e_wai t () . This attempts to decrement the
semaphore count. If the count is positive, then the semaphore is decremented and
t r ue isreturned. If the count is zero, it will wait for the semaphore to increment. If
however the abst i ne time-out isreached first, it will return f al se without
changing state, and the current thread will continue to run.
The cyg_tick count_t parameter is an absolutetime. If arelativetimeisrequired, you
should usecyg_current _ti me with an offset. For example, to time out 200 ticks from
the present you would use:

cyg_senmaphore_tinmed_wait(&em cyg_current_time() + 200);
cyg_semaphore_tinmed_wai t () isonly availableif the configuration option
CYGFUN_KERNEL_THREADS TI MER is set.

voi d cyg_senmaphor e_post (

cyg_semt *sem)
If there are threads waiting on this semaphore this will wake exactly one of them.
Otherwise it smply increments the semaphore count.

voi d cyg_senmaphor e_peek(

cyg_semt *sem,
cyg_count 32 *val)
Returns the current semaphore count in the variable pointed to by val .

Mutexes

Mutexes (mutual exclusion locks) are used in a similar way to semaphores. A mutex
only hastwo states, locked and unlocked. Mutexes are used to protect accesses to
shared data or resources. When athread locks a mutex it becomes the owner. Only the
mutex’s owner may unlock it. While a mutex remains locked, the owner should not
lock it again, as the behavior is undefined and probably dangerous.

eCos

eCos Reference Manual n 39

Native kernel C language API

If non-owners try to lock the mutex, they will be suspended until the mutex is
available again, at which point they will own the mutex.
voi d cyg_mutex_init(
cyg_nutex_t *mutex)
Initializes amutex. It isinitialized in the unlocked state.
voi d cyg_mut ex_destroy(
cyg_mutex_t *mutex)
Destroys a mutex. A mutex should not be destroyed in the locked state, as the
behavior is undefined.
cyg_bool _t cyg_mutex_I| ock(
cyg_mutex_t *mutex)
Changes the nutex from the unlocked state to the locked state. When this happens the
mutex becomes owned by the current thread. If the mutex islocked, the current thread
will wait until the mutex becomes unlocked before performing this operation. The
result of thisfunction will be TRUE if the mutex has been locked, or FALSE if it has
not. A FAL SE result can result if the thread has been released from itswait by acall to
cyg_thread_rel ease() Or cyg_nutex_rel ease().
voi d cyg_mut ex_unl ock(
cyg_mutex_t *mutex)
Changes the mutex from the locked state to the unlocked state. This function may only
be called by the thread which locked the mutex, and should not be called on an
unlocked mutex.
voi d cyg_mut ex_rel ease(
cyg_mutex_t *mutex)
Release al threads waiting on the mutex pointed to by the mutex argument. These
threads will return from cyg_mutex_lock() with a FALSE result and will not have
claimed the mutex. This function has no effect on any thread that may haev the mutex
claimed.

Condition Variables

Condition variables are a synchronization mechanism which (used with a mutex)
grants severa threads mutually exclusive access to shared data and to broadcast
availability of that datato all the other threads.

A typical example of the use of condition variables is when one thread (the producer)
is producing data and several other (consumer) threads are waiting for that datato be
ready. The consumers will wait by invoking cyg_cond_wai t (). The producer will
lock access to the data with a mutex, and when it has generated enough data for the
other processes to consume, it will invoke cyg_cond_br oadcast () to wake up the

40 n eCos Reference Manual eCos

Native kernel C language API

consumers. The Getting Sarted with eCos book has example programs which use
condition variables to implement a simple message passing system between threads.
voi d cyg_cond_init(
cyg_cond_t *cond,
cyg_nutex_t *mutex)
Initializes the condition variable. A condition variable is attached to a specific mutex.
voi d cyg_cond_destroy(
cyg_cond_t *cond)
Destroys the condition variable cond. This must not be done on a condition variable
which isin use. After it has been destroyed, it may be subsequently reinitialized.
voi d cyg_cond_wai t (
cyg_cond_t *cond)
Causes the current thread to wait on the condition variable, while simultaneously
unlocking the corresponding mutex. cyg_cond_wai t () may be called by athread
which has the corresponding mutex locked.
The thread can only be awakened by acall to cyg_cond_si gnal () or
cyg_cond_broadcast () on the same condition variable. When the thread is
awakened, the mutex will be reclaimed before this function proceeds. Since it may
have to wait for this, cyg_cond_wai t () should only be used in aloop since the
condition may become false in the meantime. Thisis shown in the following example:

extern cyg_nmutex_t mnutex;
extern cyg_cond_t cond,

cyg_mutex_l ock(&mutex);

whil e(condition_not_true)

{

cyg_cond_wait(&cond);

}

cyg_mut ex_unl ock(&mutex);
cyg_bool _t cyg_cond_timed_wait (

cyg_cond_t *cond,

cyg_tick_count _t abstime)

A time-out version of cyg_cond_wai t () which waitsfor asignal or broadcast. If a
signal or broadcast isreceived it returnst r ue, but if oneisnot received by

eCos eCos Reference Manual n 41

Native kernel C language API

absti ne, itreturnsf al se.

The cyg_tick count_t parameter is an absolutetime. If arelativetimeisrequired, you
should usecyg_current _ti me with an offset. For example, to time out 200 ticks from
the present you would use:

cyg_cond_timed_wait(&em cyg current_tinme() + 200);

cyg_cond_ti med_wai t () isonly availableif the configuration option
CYGVFN_KERNEL_SYNCH CONDVAR TI MED WAI T isset.

voi d cyg_cond_si gnal (
cyg_cond_t *cond)

Wakes up at least one thread which is waiting on the condition variable. When a
thread is awakened it will become the owner of the mutex. cyg_cond_si gnal () may
be called by the thread which currently owns the mutex to which the condition
variableis attached.

voi d cyg_cond_broadcast (
cyg_cond_t *cond)

Wakes all the threads waiting on the condition variable. Each time athread is
awakened it will become the current owner of the mutex.

Memory pools

There are two sorts of memory pools. A variable size memory pool isfor alocating
blocks of any size. A fixed size memory pool, has the block size specified when the
pool is created and only provides blocks of that size.

Blocking, non-blocking and “blocking with time-out” versions of these calls are
provided.

voi d cyg_menpool _var _creat g(

voi d *base,
cyg_int 32 size,
cyg_handl e_t *handle,
cyg_nenpool _var *var)
Creates a variable size memory pool. The parameters are:
base

base of memory to use for pool
si ze

size of memory pool in bytes
handl e

42 n eCos Reference Manual eCos

Native kernel C language API

returned handle of memory pool
var
space to put pool structure in
voi d cyg_menpool _var _del et g(
cyg_handl e_t varpool)
Deletes the variable size memory pool var pool .
voi d *cyg_menpool _var_al |l oc(
cyg_handl e_t varpool,
cyg_int32 size)
Allocates ablock of length si ze. Thiswill block until the memory becomes
available.
voi d *cyg_nenpool _var _timed_al | oc(
cyg_handl e_t varpool,
cyg_int 32 size,
cyg_tick_count _t abstime)
Allocates ablock of length size. If the requested amount of memory isnot available, it
will wait until abst i me before giving up and returning NULL.
voi d *cyg_nenpool _var_try_al |l oc(
cyg_handl e_t varpool,
cyg_int32 size)
Allocates ablock of length size. NULL isreturned if not enough is available.
voi d cyg_menpool _var _free(
cyg_handl e_t varpool,
void *p)
Frees memory back into variable size pool.
cyg_bool _t cyg_nenpool _var_wai ting(
cyg_handl e_t varpool)
Returns true if any threads are waiting for memory in pool .

typedef struct {

cyg_int32 total mem

cyg_int32 freenem

voi d *base;

cyg_int32 size;

cyg_i nt 32 bl ocksi ze;

cyg_int32 maxfree; // The largest free bl ock
} cyg_nenpool _info;

eCos eCos Reference Manual n 43

Native kernel C language API

voi d cyg_nenpool _var _get _i nfo(
cyg_handl e_t varpool,
cyg_nenpool _i nfo *info)
Puts information about a variable memory pooal into the structure provided.
voi d cyg_menpool _fix_create(
voi d *base,
cyg_int32 size
cyg_i nt 32 blocksize,
cyg_handl e_t *handle,
cyg_nenpool _fix *fix)
Create afixed size memory pool. This function takes the following parameters:
base
base of memory to use for pool
si ze
size of total space requested
bl ocksi ze
size of individual elements
handl e
returned handle of memory pool
fix
space to put pool structure in
voi d cyg_menpool _fix_del et g(
cyg_handl e_t fixpool)
Deletes the given fixed size memory pool.
voi d *cyg_menpool _fix_all oc(
cyg_handl e_t fixpool)

Allocates ablock. If the memory is not available immediately, this blocks until the
memory becomes available.

voi d *cyg_nenpool _fix_timed_all oc(
cyg_handl e_t fixpool,
cyg_tick_count _t abstime)

Allocates ablock. If the memory is not already available, it will try until abst i ne
before giving up and returning a NULL.

voi d *cyg_menpool _fix_try_all oc(

44 n eCos Reference Manual eCos

Native kernel C language API

cyg_handl e_t fixpool)

Allocates ablock. NULL isreturned if no memory isavailable.
voi d cyg_menpool _fix_free(

cyg_handl e_t fixpool,

void *p)

Frees memory back into fixed size pool.
cyg_bool _t cyg_menpool _fix_waiting(

cyg_handl e_t fixpool)

Returns true if there are any threads waiting for memory in the given memory pool.
voi d cyg_menpool _fix_get _info(

cyg_handl e_t fixpool,

cyg_nenpool _i nfo *info)

Puts information about a variable memory pooal into the structure provided.

The fixed size memory pool simply returns blocks of memory of exactly the blocksize
requested. If the poal is being used to allocate memory for atype that has alignment
constraints (such as 4-byte alignment), then it is up to the user to align the memory
appropriately for the type in question. Alternatively, choose a blocksize that isan
exact multiple of the required alignment.

The memory available from the memory pools will not be the same size as the
memory supplied to it. Some of the memory is used for internal data structures of the
alocator. cyg_menpool _fix_get _i nfo() and cyg_nenpool _var _get _i nfo() may
be used to determine the available memory.

Message boxes

M essage boxes are a primitive mechanism for exchanging messages between threads,
inspired by the LI TRON specification. A message box can be created with
cyg_nbox_creat e() beforethe scheduler is started, and two threadsin atypical
producer/consumer relationship can accessit. One thread, the producer, will use
cyg_nbox_put () to make data available to the consumer thread which uses
cyg_nbox_get () to accessthe data.

The size of the internal message queue is configured by the
CYGNUM_KERNEL _SYNCH MBOX_ QUEUE_SI ZE parameter (see “Message box
queue size’, in Section V). The default value is 10.

Blocking, non-blocking and “blocking with time-out” versions of these calls are
provided.

voi d cyg_nbox_creat e(

eCos eCos Reference Manual n 45

Native kernel C language API

voi d

voi d

voi d

voi d

voi d

cyg_handl e_t *handle,

cyg_nbox *mbox)
Creates a message box using the space provided in the mhox parameter, and returns a
handle for future access to that message box.

cyg_nbox_del et e(

cyg_handl e_t mbox)
Deletes the given message box.

*cyg_mnbox_get (

cyg_handl e_t mbox)

Waits for amessage to be available, then retrieves it and returns the address of the
data.

*cyg_nbox_ti med_get (

cyg_handl e_t mbox,
cyg_tick_count _t timeout)

Waits for amessage to be available, but timesout if t i meout time passes. This
version of the function isonly availableif the configuration option
CYGFUN_KERNEL_THREADS TI MERis turned on.

*cyg_mnbox_tryget (

cyg_handl e_t mbox)

Checksto seeif amessage isready. If no messageis availableit returnsimmediately
with areturn value of NULL. If amessageis availableit retrievesit and returns the
address of the data.

*cyg_mnbox_peek_item

cyg_handl e_t mbox)
Checksto seeif amessage isready, and if one is available returns the address of the
data without removing the message from the queue. If no message is available it
returns NULL.

cyg_bool _t cyg_mbox_put (

cyg_handl e_t mbox,

voi d *item)

Places a message in the given message box. If the queueis full it will block until the
message can be sent. It returnstrue if the message was successfully sent, and false if
the message was not sent and its sleep was awakened by the kernel before the message
could be sent.
Thecyg_nbox_put () functionisonly availableif the
CYGMVITH_MBOXT_PUT_CAN_WAI T configuration has been selected.

cyg_bool _t cyg_nbox_ti med_put (

46 n eCos Reference Manual eCos

Native kernel C language API

cyg_handl e_t mbox,

voi d *item,

cyg_tick_count _t abstime)

A time-out version of cyg_mbox_put () . Thiswill try to place the message in the given

message box. If the queueisfull, it will wait until abst i me before giving up and
returning f al se.

Thecyg_nbox_ti med_put () functionisonly availableif the both the
CYGVFN_KERNEL_SYNCH MBOXT_PUT_CAN WAI T and
CYGFUN_KERNEL _THREADS TI MER configuration have been selected.

cyg_bool _t cyg_mbox_tryput (
cyg_handl e_t mbox,
voi d *item)
Triesto place amessage in the given message box. It returnst r ue if the message was

successfully sent, and f al se if the message could not be sent immediately, usually
because the queue was full.

cyg_count 32 cyg_nbox_peek(

cyg_handl e_t mbox)

Takes apeek at the queue and returns the number of messages waiting in it.
cyg_bool _t cyg_nbox_wai ting_to_get (

cyg_handl e_t mbox)

Queriesthe kernel to see if other processes are waiting to receive a message in the

given message box. Returnst r ue if other processes are waiting, f al se otherwise.
cyg_bool _t cyg_nbox_wai ting_to_put (

cyg_handl e_t mbox)

Queriesthe kernel to seeif other processes are waiting to send amessage in the given
message box. Returnst r ue if other processes are waiting, f al se otherwise.

Flags

Flags are a synchronization mechanism which allow athread to wait for asingle
condition or acombination of conditions. The conditions are represented by bitsin a
32 bit word. Flags are inspired by the uI TRON specification.

Flags are of type cyg_flag_t, which are 32 bit words, and routines are provided to set
or mask some bitsin the flag value.

A “consumer side” thread can wait for a*“producer side” thread to set the entire
collection of hits, or any subset of them.

eCos eCos Reference Manual n 47

Native kernel C language API

When athread sets some bitsin aflag, all threads whose requirements are now
satisfied are woken up; thus flags have broadcast semantics. A variation on the wait
call can specify that the flag value be cleared when the wait call is satisfied, in which
case the setting of bits would not be a broadcast.

Blocking, non-blocking, and “blocking with time-out” versions of the wait calls are
provided.

void cyg_flag_ init(
cyg_flag_t *flag)
Initializes aflag variable.
voi d cyg_flag_destroy(
cyg_flag_t *flag)
Destroys aflag variable.
voi d cyg_flag_sethits(
cyg_flag_t *flag,
cyg_flag_val ue_t value)
Setsthe bitsinf | ag which aresetinval ue.
A side effect of cyg_f 1 ag_set bi t s() isthat the kernel wakes up any waiting threads
whose requirements are now satisfied.
flag
A pointer to the flag whose bits are being set. The new setting of f | ag will be
*flag -> (*flag | value).
val ue
A word whose 1 bitswill bealso setin*f | ag.
voi d cyg_flag_maskbits(
cyg_flag_t *flag,
cyg_flag_val ue_t value)
Clear the hitsin the given flag which are zero inthe val ue. This cannot result in new
threads being eligible for awakening.
flag
A pointer to the flag whose bits are being cleared. The new setting of f | ag will
be*flag -> (*flag & val ue).
val ue
A word whose 0 bitswill be also cleared in *f | ag.
We now describethecyg_f1 ag_wai t (), which frequently uses the following macros:

#defi ne CYG_FLAG WAl TMODE_AND ((cyg_fl ag_node_t)0)

48 n eCos Reference Manual eCos

Native kernel C language API

#defi ne CYG_FLAG WAI TMODE_OR ((cyg_flag_node_t) 2)
#defi ne CYG_FLAG WAl TMODE_CLR ((cyg_flag_node_t)1)

cyg flag_value_t cyg_flag_ wait/(

cyg_flag_t *flag,
cyg_flag_val ue_t pattern,
cyg_flag_node_t mode)

Wait for all the bitswhich areoneinpatterntobesetinthef | ag vaue (if nrode
isCYG_FLAG WAl TMODE_AND) or for any of the bitswhich are onein pattern to be
set in the flag value (if node isCYG_FLAG WAl TMODE_OR).

When cyg_fl ag_wait () returns, meaning that the condition is met, the flag value
which succeeded isreturned from the call; in other circumstances (such as a bad value
for node or pat t er n), zero is returned to indicate the error.

If the mode is one of those above plus CYG_FLAG WAl TMODE CLR, the whole of
the flag value is cleared to zero when the condition is met.

cyg_flag_wait () takesthefollowing parameters:
flag

The value of the flag (set by the thread that called cyg_f1 ag_setbits() or
cyg_fl ag_maskbits()) isplacedin here.

pattern
The set of bitswhich, if set, will cause the calling thread to be woken up.
node
A parameter which modifies the conditions for wake-up. It can take the following
values:
CYG_FLAG_WAI TMODE_AND
Only wake up if all the bitsin mask isset in the flag.
CYG _FLAG WAl TMODE_OR
Wake up if any of the bitsin mask is set in the flag.
CYG_FLAG WAl TMODE_AND + CYG_FLAG_WAI TMODE_CLR,
CYG_FLAG WAl TMODE_OR+ CYG FLAG WAl TMODE_CLR
Like CYG_FLAG WAl TMODE_AND and CYG_FLAG_WAI TMODE_OR, but the

entireflag is cleared to zero when the condition is met, whereas normally only the
bitsthat are set in pat t er n would be cleared.

Waiting threads are queued depending on the semantics of the underlying scheduler.
In release 1.3.x, this means that, if the multi-level queue scheduler is selected,
queueing isin FIFO ordering, while the bitmap scheduler supports thread priority
ordered queueing. When some flag value bits become signalled by acall to

eCos

eCos Reference Manual n 49

Native kernel C language API

cyg_flag_setbits(),thequeueisscanned in order, and each waiting thread in turn
isawoken or re-queued depending on its request. When athread is awoken, if it made
thewait call with CYG_FLAG WAl TMODE_CLR, the flag valueiscleared to zero, and
the scan of queued threads is terminated.

cyg flag_value_t cyg_flag_ tined_wait(
cyg_flag_t *flag,
cyg_flag_val ue_t pattern,
cyg_flag_node_t mode,
cyg_tick_count _t abstime)
A time-out version of cyg_fl ag_wai t () . Thiswaits for the condition required by
pattern and mode to be met, or until the abstime time-out is reached, whichever isfirst.

If thetime-out is reached first, zero is returned. Thiscall isonly availableif the
configuration option CYGFUN_KERNEL _THREADS TI MER is enabled.

cyg flag_value_t cyg_flag_poll(
cyg_flag_t *flag,
cyg_flag_val ue_t pattern,
cyg_flag_node_t mode)
A non-blocking version of cyg_f1 ag_wai t (). If the condition required by pattern and

mode is met, the flag value is returned, otherwise zero is returned. The flag value may

be cleared in the event of success by specifying CYG_FLAG WAl TMODE_CLRin the
mode, as usual.

cyg_flag_value_t cyg_flag_peek(
cyg_flag_t *flag)
Returns the current flag value.
cyg_bool _t cyg flag_waiting(
cyg_flag_t *flag)
Returns true if there are threads waiting on this flag.

50 n eCos Reference Manual eCos

HITRON API

UITRON API

The uITRON specification defines a highly flexible operating system architecture
designed specifically for application in embedded systems. The specification
addresses features which are common to the majority of processor architectures and
deliberately avoids virtualization which would adversely impact real-time
performance. The pI TRON specification may be implemented on many hardware
platforms and provides significant advantages by reducing the effort involved in
understanding and porting application software to new processor architectures.
Several revisions of the LITRON specification exist. In thisrelease, eCos supportsthe
UITRON version 3.02 specification, with complete “ Standard functionality” (level S),
plus many “Extended” (level E) functions. The definitive reference on uITRON is Dr.
Sakamura's book I TRON 3.0, An Open and Portable Real-Time Operating System
for Embedded Systems. If you have purchased the eCos Developer’s Kit, you will
have received a copy of this book. Otherwise, the book can be purchased from the
|EEE Press, and an ASCI|I version of the standard can be found online at
http://ww.itron.gr.jp/

(The old address

http://tron.um u-tokyo. ac.jp/ TRON | TROV

still exists asamirror site.)

The eCos kernd implements the functionality used by the ul TRON compatibility
subsystem. The configuration of the kernel influences the behavior of uI TRON
programs.

eCos

eCos Reference Manual n 51

HITRON API

In particular, the default configuration has time slicing (also known as round-robin
scheduling) switched on; this means that atask can be moved from RUN state to READY
state at any time, in order that one of its peers may run. Thisis not strictly conformant
to the WITRON specification, which states that timeslicing may be implemented by
periodically issuing ar ot _rdq(0) call from within aperiodic task or cyclic handler;
otherwise it is expected that atask runs until it is pre-empted in consequence of
synchronization or communications calls it makes, or the effects of an interrupt or
other external event on a higher priority task cause that task to become READY. To
disable timedicing functionality in the kernel and I TRON compatibility
environment, please disable the CYGSEM _KERNEL _SCHED_TI MESLI CE
configuration option in the kernel package. A description of kernel schedulingisin
“Thread operations’ on page 27.

For another example, the semantics of task queueing when waiting on a
synchronization object depend solely on the way the underlying kerndl is configured.
Asdiscussed above, the multi-level queue scheduler isthe only one which is il TRON
compliant, and it queues waiting tasks in FIFO order. Future rel eases of that scheduler
might be configurable to support priority ordering of task queues. Other schedulers
might be different again: for example the bitmap scheduler can be used with the
MITRON compatibility layer, even though it only allows one task at each priority and
as such is not LI TRON compliant, but it supports only priority ordering of task
gueues. So which queueing scheme is supported is not really a property of the
UITRON compatibility layer; it depends on the kernel.

In this version of the LI TRON compatibility layer, the calls to disable and enable
scheduling and interrupts (di s_dsp() , ena_dsp(), ! oc_cpu() and unl _cpu()) call
underlying kernel functions; in particular, the xxx_dsp() functionslock the scheduler
entirely, which prevents dispatching of DSRs; functions implemented by DSRs
include clock counters and alarm timers. Thus time “ stops’ while dispatching is
disabled with di s_dsp().

Like all parts of the eCos system, the detailed semantics of the WITRON layer are
dependent on its configuration and the configuration of other componentsthat it uses.
The uITRON configuration options are all defined in thefile pkgconf / ui tron. h, and
can be set using the configuration tool or editing this file by hand.

An important configuration option for the uI TRON compatibility layer is
CYGSEM Ul TRON_BAD PARAMS RETURN_ ERRORS (see“Option: Return Error
Codes for Bad Params’, in Section V), which alows a lot of the error checking code
in the WITRON compatibility layer to be removed; of course this |eaves a program
open to undetected errors, so it should only be used once an applicationisfully
debugged and tested. Its benefitsinclude reduced code size and faster execution.
However, it affectsthe API significantly, in that with this option enabled, bad calls do
not return errors, but either cause an assert failure (if that isitself enabled) or

52 n eCos Reference Manual eCos

HITRON API

malfunction internally. Thereisdiscussion in more detail about thisin each section
below.

We now give abrief description of the WITRON functions which are implemented in
thisrelease. Note that all C and C++ source files should have the following #i ncl ude
Statement:

#i ncl ude <cyg/ compat/uitron/uit_func. h>

Task Management Functions

The following functions are fully supported in this release:
ER sta_t sk(
| D tskid,
I NT stacd)
voi d ext _tsk(void)
voi d exd_tsk(void)
ER di s_dsp(void)
ER ena_dsp(void)
ER chg_pri (
I D tskid,
PRI tskpri)
ER rot _rdq(
PRI tskpri)
ER get _ti d(
ID *p_tskid)
ER ref _tsk(
T_RTSK *pk_rtsk,
I D tskid)
ER ter_tsk(
I D tskid)
ER rel _wai (
I D tskid)
The following two functions are supported in this release, when enabled with the

configuration option CY GPKG_UITRON_TASKS CREATE DELETE with some
restrictions:

ER cre_t sk(

eCos eCos Reference Manual n 53

HITRON API

I D tskid,
T_CTSK *pk_ctsk)
ER del _t sk(
I D tskid)
These functions are restricted as follows:

Because of the static initialization facilities provided for system objects, atask is
alocated stack space statically in the configuration. So while tasks can be created and
deleted, the same stack space is used for that task (task ID number) each time. Thus
the stack size (pk_ctsk->stksz) requested incre_t sk() ischecked for being less than
that which was statically allocated, and otherwise ignored. This ensures that the new
task will have enough stack to run. For thisreason del _t sk() doesnot in any sense
free the memory that wasin use for the task’s stack.

Thetask attributes (pk_ctsk->tskatr) are ignored; current versions of eCos do not need
to know whether atask iswritten in assembler or C/C++ so long as the procedure call
standard appropriate to the CPU is followed.

Extended information (pk_ctsk->exinf) isignored.

Error checking

For dl these calls, aninvalid task id (tskid) (lessthan 1 or greater than the number of
configured tasks) only returns E_ID when bad params return errors
(CYGSEM Ul TRON_BAD PARAMS RETURN_ERRORS is enabled, see above).

Similarly, the following conditions are only checked for, and only return errors if
CYGSEM_Ul TRON_BAD PARAMS_RETURN_ERROCRS is enabled:

pk_crtkincre_t sk() isavalid pointer, otherwise return E_PAR

ter_tsk() orrel _wai () onthecalingtask returnsE_OBJ

the CPU isnot locked already indi s_dsp() and ena_dsp() ; returnsE_CTX
priority level inchg_pri () androt _rdq() ischecked for validity, E_ PAR
return value pointer inget _ti d() andref _t sk() isavalid pointer, or E_ PAR

The following conditions are checked for, and return error codes if appropriate,
regardless of the setting of CYGSEM_U TRON_BAD_PARAMS_RETURN_ERRORS:
» When create and delete functionscre_t sk() and del _t sk() are supported, all
callswhich use avalid task ID number check that the task exists; if not,
E _NOEXSisreturned
When supported, cre_t sk() : the task must not already exist; otherwise E_OBJ
When supported, cre_t sk() : the requested stack size must not be larger than that
statically configured for the task; see “Option: Static initializerst”, in Section V
and “Option: Default stack size”, in Section V. Else E NOMEM
When supported, del _t sk() : the underlying eCos thread must not be running -

54 n eCos Reference Manual eCos

HITRON API

this would imply either abug or some program bypassing the W TRON
compatibility layer and manipulating the thread directly. E OBJ

sta_t sk() : thetask must be dormant, else E_OBJ

ter_tsk(): thetask must not be dormant, else E_ OBJ

chg_pri () : thetask must not be dormant, else E_OBJ

rel _wai ():thetask must bein Wal T or WAI T- SUSPEND state, else E_ OBJ

Task-Dependent Synchronization
Functions

These functions are fully supported in this release:

ER sus_t sk(
I D tskid)
ER rsm t sk(
I D tskid)
ER frsmt sk(
I D tskid)
ER sl p_tsk(void)
ER tsl p_tsk(
TMO tmout)
ER wup_t sk(
I D tskid)
ER can_wup(
I NT *p_wupcnt,
I D tskid)

Error checking

The following conditions are only checked for, and only return errors if
CYGSEM _Ul TRON_BAD_PARAMS_RETURN_ERRORS is enabled (see “Option:
Return Error Codes for Bad Params’, in Section V):

invalid tskid; less than 1 or greater than CY GNUM_UITRON_TASK S returns
E ID
wup_tsk(), sus_tsk(),rsmtsk(),frsmtsk() onthecaling task returns
E OBJ
dispatching isenabledintsl p_tsk() andsl p_tsk(), or E_CTX
tmout must be positive, otherwise E_ PAR
return value pointer in can_wup() isavalid pointer, or E_PAR
The following conditions are checked for, and can return error codes, regardless of the

eCos eCos Reference Manual n 55

HITRON API

setting of CYGSEM Ul TRON_BAD PARAMS_RETURN ERRORS:
» When create and delete functionscre_t sk() and del _t sk() are supported, al
callswhich use avalid task ID number check that the task exists; if not,
E NOEXSisreturned
sus_t sk() : thetask must not be dormant, else E_OBJ
frsm rsmtsk(): thetask must be suspended, else E_ OBJ
tsl p/sl p_tsk(): return codesE TMOUT, E_ RLWAI and E_DLT are returned
depending on the reason for terminating the sleep
wup_t sk() and can_wup() : the task must not be dormant, or E_ OBJ s returned

Synchronization and Communication
Functions

These functions are fully supported in this release:
ER si g_sem(
I D semid)
ER wai _sem(
I D semid)
ER preq_sen
I D semid)
ER twai _sen{
| D semid,
TMO tmout)
ER ref _sem(
T_RSEM *pk_rsem,
I D semid)
ER set _fl g(
I D flgid,
U NT setptn)
ER clr_flg(
I D flgid,
U NT clrptn)
ER wai _f1 g(
u NT *p_flgptn,
I D flgid,
U NT waiptn,
U NT wfmode)

56 n eCos Reference Manual eCos

HITRON API

ER pol _fl g(
u Nt *p_flgptn,
ID flgid,
U NT waiptn,
U NT wfmode)
ER twai _fl g(
u NT *p_flgptn
ID flgid,
Ul NT waiptn,
U NT wfmode,
TMO tmout)
ER ref _flg(
T_RFLG *pk_rflg,
I D flgid)
ER snd_nsg(
| D mbxid,
T_MBG *pk_msg)
ER rcv_nsg(
T_MSG **ppk_msg,
I D mbxid)
ER prcv_nsg(
T_MSG ** ppk_msg,
I D mbxid)
ER trcv_nsg(
T_MSG **ppk_msg,
I D mbxid,
TMO tmout)
ER ref _nbx(
T_RMVBX *pk_rmbx,
I D mbxid)
The following functions are supported in this release (with some restrictions) if
enabled with the appropriate configuration option for the object type (for example
CYGPKG_Ul TRON_SEMAS CREATE_DELETE):
ER cre_semn(
I D semid,
T_CSEM *pk_csem)
ER del _sem(
ID semid)
ER cre_fl g(
I D flgid,

eCos eCos Reference Manual n 57

HITRON API

T_CFLG *pk cflg)
ER del _f1 g(

I D flgid)
ER cre_nbx(

I D mbxid,

T_CcvBX *pk_cmbx)
ER del _nbx(

I D mbxid)

In general the queueing order when waiting on a synchronization object depends on
the underlying kernel configuration. The multi-level gueue scheduler is required for
strict WITRON conformance and it queuestasksin FIFO order, so requeststo create an
object with priority queueing of tasks (pk_cxxx- >xxxatr = TA_TPRI) are rejected
with E_RSATR. Additional undefined bits in the attributes fields must be zero.

In general, extended information (pk_cxxx->exinf) isignored.

For semaphores, the initial semaphore count (pk_csem->isemcnt) is supported; the
new semaphore’s count is set. The maximum count is not supported, and is not in fact
defined in type pk_csem.

For flags, multiple tasks are allowed to wait. Because single task waiting is a subset of
this, the W bit (TA_WMUL) of the flag attributes is ignored; all other bits must be
zero. Theinitial flag value is supported.

For mailboxes, the buffer count is defined statically by kernel configuration option
CYGNUM_KERNEL _SYNCH_MBOX_QUEUE_SI ZE; therefore the buffer count field
is not supported and is not in fact defined in type pk_cmbx. Queueing of messagesis
FIFO ordered only, so TA_MPRI (in pk_cmbx->mbxatr) is not supported.

Error checking

The following conditions are only checked for, and only return errors if
CYGSEM_Ul TRON_BAD PARAMS_RETURN_ERROCRS is enabled:

invalid object id; lessthan 1 or greater than
CYGNUM_UITRON_TASKS/SEMAS/MBOXES as appropriate returns E_I1D

dispatching is enabled in any call which can sleep, or E_ CTX

tmout must be positive, otherwise E_ PAR

pk_cxxx pointersincre_xxx() must bevalid pointer, or E PAR
return value pointersinref _xxx() isavalid pointer, or E_ PAR

flag wait pattern must be non-zero, and mode must be valid, or E_ PAR
return value pointer in flag wait callsisavalid pointer, or E_ PAR

The following conditions are checked for, and can return error codes, regardless of the
setting of CYGSEM Ul TRON_BAD PARAMS RETURN ERRORS:

When create and delete functions cr e_xxx() and del _xxx() are supported, all

58 n eCos Reference Manual eCos

HITRON API

callswhich use avalid object ID number check that the object exists. If not,

E NOEXSisreturned.

In create functionscre_xxx() , when supported, if the object already exists, then
E_OBJ

In any call which can sleep, such astwai _sen() : return codesE_TMOUT,

E RLWAI, E_DLT or of course E_OK are returned depending on the reason for
terminating the sleep

In polling functions such as pr eq_sen() return codesE_ TMOUT or E_OK are
returned depending on the state of the synchronization object

In creation functions, the attributes must be compatible with the selected
underlying kernel configuration: incre_senm() pk_csem >senat r must be equal
to TA_TFI FOelse E RSATR.

Incre_flg() pk_cflg->flgatr must be either TA WMUL or TA WSGL €lse
E_RSATR.

Incre_nmbx() pk_cnbx->nmbxat r must be TA_TFI FO + TA_MFI FOelse E_ RSATR.

Extended Synchronization and
Communication Functions

None of these functions are supported in this release.

Interrupt management functions

These functions are fully supported in this release:

void ret_int(void)
ER | oc_cpu(void)
ER unl _cpu(void)
ER dis_int(

U NT eintno)
ER ena_i nt (

U NT eintho)

voi dret _wup(
I D tskid)

ER i wup_t sk(
I D tskid)

ER i sig_sen

eCos eCos Reference Manual n 59

HITRON API

I D semid)
ER iset _flg(

I D flgid,

Ul D setptn)

ER i send_nsg(
| D mbxid,

T_MSG *pk_msg)
Notethatret _int () andtheret _wup() are implemented as macros, containing a
“return” statement.
Also notethatr et _wup() andthei xxx_yyy() style functionswill only work when
called from an ISR whose associated DSR iscyg_ui tron_dsr (), as specified in
include file <cyg/ conpat / ui tron/ ui t _i f nc. h>, which definesthei xxx_yyy() style
functions also. Do not use them from a DSR: use plaini xxx_yyy() stylefunctions
instead.
The following functions are not supported in this release:
ER def _i nt (
Ul NT dintno,
T_DINT *pk_dint)
ER chg_i XX(
U NT iXXXX)
ER ref _i XX(
U NT * p_iXXXX)
These unsupported functions are all Level C (CPU dependent). Equivalent
functionality is available via other eCos-specific APIs.

Error checking

The following conditions are only checked for, and only return errors if
CYGSEM _Ul TRON_BAD_PARAMS_RETURN_ERRORS is enabled:

| oc/ unl _cpu() : these must only be called in a ul TRON task context, else
E CTX.

di s/ ena_i nt () : theinterrupt number must be in range as specified by the
platform HAL in qustion, else E_PAR.

Memory pool Management Functions

These functions are fully supported in this release:
ER get _bl f(
VP *p_blf,

60 n eCos Reference Manual eCos

HITRON API

I D mpfid)
ER pget _bl f (
VP *p_blf,
I D mpfid)
ER t get _bl f(
VP *p_blf,
I D mpfid,
TMO tmout)
ER rel _blf(
I D mpfid,
VP blIf)
ER ref _npf(
T_RWPF *pk_rmpf,
I D mpfid)
ER get _bl k(
VP *p_blk,
I D mplid,
I NT blksz)
ER pget _bl k(
VP *p_hlk,
I D mplid,
I NT blksz)
ER t get _bl k(
VP *p_hlk,
I D mplid,
I NT blksz,
TMO tmout)
ER rel _bl k(
I D mplid,
VP blk)
ER ref _npl (
T_RwPL *pk_rmpl,
I D mplid)
Note that of the memory provided for aparticular pool to manage in the static
initialization of the memory pool objects, some memory will be used to manage the
pool itself. Therefore the number of blocks * the blocksize will be less than the tota
memory size.
The following functions are supported in this release, when enabled with

CYGPKG_UITRON_MEMPOOLVAR_CREATE_DELETE or
CYGPKG_UITRON_MEMPOOLFIXED_CREATE_DELETE as appropriate, with

eCos eCos Reference Manual n 61

HITRON API

some restrictions:
ER cre_npl (
I D mplid,
T_CcwPL *pk_cmpl)
ER del _npl (
I D mplid)
ER cre_npf(
I D mpfid,
T_CWPF *pk_cmpf)
ER del _npf (
I D mpfid)
Because of the static initialization facilities provided for system objects, a memory
pool is allocated aregion of memory to manage statically in the configuration. So
while memory pools can be created and del eted, the same area of memory is used for
that memory pool (memory pool ID number) each time. The requested variable pool
size (pk_cmpl->mplsz) or the number of fixed-size blocks (pk_cmpf->mpfcnt) times
the block size (pk_cmpf->blfsz) are checked for fitting within the statically allocated
memory area, so if acreate call succeeds, the resulting pool will be at least as large as
that requested. For thisreason del _npl () anddel _npf () do not in any sense free the
memory that was managed by the deleted pool for use by other pools; it may only be
managed by a pool of the same object id.

For both fixed and variable memory pools, the queueing order when waiting on a
synchronization object depends on the underlying kernel configuration. The
multi-level queue scheduler isrequired for strict LI TRON conformance and it queues
tasksin FIFO order, so requests to create an object with priority queueing of tasks
(pk_cxxx->xxxatr = TA_TPRI) arergjected with E_ RSATR. Additiona undefined
bitsin the attributes fields must be zero.

In general, extended information (pk_cxxx->exinf) isignored.

Error checking

The following conditions are only checked for, and only return errors if
CYGSEM Ul TRON_BAD PARAMS_ RETURN_ERRORS is enabled:

invalid object id; lessthan 1 or greater than

CYGNUM_UI TRON_MVEMPOOLVAR/ MEMPOOLFI XED as appropriate returns
E ID

dispatching is enabled in any call which can sleep, or E_ CTX

tmout must be positive, otherwise E_ PAR

pk_cxxx pointersin cre_xxx() must be valid pointer, or E_ PAR

return value pointersinref _xxx() isavalid pointer, or E_ PAR

62 n eCos Reference Manual eCos

HITRON API

return value pointersin get block routinesis avalid pointer, or E_PAR
blocksize request in get variable block routines is greater than zero, or E_PAR
The following conditions are checked for, and can return error codes, regardless of the
setting of CYGSEM Ul TRON_BAD_PARAMS_RETURN_ERRORS:
» When create and delete functionscre_xxx() and del _xxx() are supported, all
callswhich use avalid object ID number check that the object exists. If not,
E NOEXSisreturned.
When create functionscr e_xxx() are supported, if the object already exists, then
E_OBJ
In any call which can slegp, such asget _bl k() : return codesE_TMOUT,
E RLWAI, E_DLT or of course E_OK are returned depending on the reason for
terminating the leep
In polling functions such as pget _bl k() return codesE_ TMOUT or E_OK are
returned depending on the state of the synchronization object
In creation functions, the attributes must be compatible with the sel ected
underlying kernel configuration: incre_npl () pk_cnpl - >npl at r must be equal
to TA_TFI FOelse E RSATR.
Incre_npf () pk_cnpf->npf at r must be equal to TA_TFI FOelse E_ RSATR.
In creation functions, the requested size of the memory pool must not be larger
than that statically configured for the pool else E_ RSATR; see “Option: Static
initializers’, in Section V. Incre_npl () pk_cnpl - >npl sz isthefield of interest
Incre_npf () the product of pk_cnpf - >bl f sz and pk_cnpf - >npf cnt must be
smaller than the memory statically configured for the pool else E RSATR
In functions which return memory to the pool rel _bl k() andrel _bl f (), if the
freefails, for example because the memory did not come from that pool
originaly, then E_PAR isreturned

Time Management Functions

These functions are fully supported in this release:

ER set _tim

SYSTI ME *pk_tim)

CAUTION Setting the time may cause erroneous operation of the kernel, for example a
task performing await with a time-out may never awaken.

ER get _tim(

SYSTI ME *pk_tim)
ER dly_t sk(

eCos eCos Reference Manual n 63

HITRON API

DLYTI ME dlytim)
ER def _cyc(

HNO cycno,

T_DCYC *pk_dcyc)
ER act _cyc(

HNO cycno,

U NT cycact)
ER ref _cyc(

T_RCYC *pk_reyc,

HNO cycno)

ER def _al m(
HNO almno,
T_DALM *pk_dalm)
ER ref _al m(
T_RALM *pk_ralm,
HNO almno)

void ret _tm(void)
Error checking

The following conditions are only checked for, and only return errors if
CYGSEM _Ul TRON_BAD_PARAMS_RETURN_ERRORS is enabled:

invalid handler number; lessthan 1 or greater than
CYGNUM_UI TRON_CYCLI CS/ ALARMS as appropriate, or E_ PAR

dispatchingisenabledindl y_tsk(),or E CTX

dlytim must be positive or zero, otherwise E_ PAR

return value pointersinref _xxx() isavalid pointer, or E_ PAR
params within pk_dalm and pk_dcyc must be valid, or E_ PAR
cycactinact _cyc() must bevalid, or E_ PAR

handler must be defined inref _xxx() and act _cyc(), or E NOEXS

parameter pointer must be agood pointeringet _ti n() andset _ti n(), otherwise
E PARisreturned

The following conditions are checked for, and can return error codes, regardless of the
setting of CYGSEM Ul TRON_BAD PARAMS RETURN ERRORS:

dly_tsk(): return code E_RLWAI is returned depending on the reason for
terminating the sleep

System Management Functions

These functions are fully supported in this release:

64 n eCos Reference Manual eCos

HITRON API

ER get _ver(
T_VER *pk ver)
ER ref _sys(
T_RSYS *pk_rsys)
ER ref _cfg(
T_RCFG *pk_rcfg)
Note that the information returned by each of these calls may be configured to match
the user's own versioning system, and the values supplied by the default configuration
may be inappropriate.
These functions are not supported in this release:
ER def _svc(
FN s fncd,
T_DSvC *pk_dsvc)
ER def _exc(
U NT exckind,
T_DEXC *pk_dexc)
Error checking

The following conditions are only checked for, and only return errors if
CYGSEM _Ul TRON_BAD_PARAMS_RETURN_ERRORS is enabled:

return value pointer in all callsisavalid pointer, or E_PAR

Network Support Functions

None of these functions are supported in this release.

eCos eCos Reference Manual n 65

The eCos Hardware Abstraction Layer (HAL)

The eCos Hardware Abstraction
Layer (HAL)

Thisisan initial specification of the eCos Hardware Abstraction Layer (HAL). The
HAL abstracts the underlying hardware of a processor architecture and/or the platform
to alevel sufficient for the eCos kernel to be ported onto that platform.

Caveat This document is an informal description of the HAL capabilities and is not
intended to be full documentation, although it may be used as a source for such. It also
describesthe HAL asit is currently implemented for the architectures targeted in this
release. Further work (described in “Future developments’ on page 83), is needed to
completeit.

Architecture, implementation and
platform

We have identified three levels at which the HAL must operate. The architecture
HAL abstracts the basic CPU architecture and includes things like interrupt delivery,
context switching, CPU startup etc. The platform HAL abstracts the properties of the
current platform and includes things like platform startup, timer devices, 1/0 register
access and interrupt controllers. The implementation HAL abstracts propertiesthat lie

66 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

between these two, such as architecture variants and on-chip devices. The boundaries
between these three HAL levels are necessarily blurred.

In the current HAL structure, there are separate directory trees for the architectural
and platform HALs. The implementation HAL is currently supported in one or other
of these by means of conditional compilation depending on how generic a particular
feature is expected to be. Thus processor variants are handled in the architectural HAL
since they are likely to be generic to severa implementations. On-chip devices are
handled in the platform HAL, if they impact the kernel, or as proper device drivers
(and are thus outside the HAL).

The one areawhere there is significant interaction between these HAL layersisin the
interrupt delivery VSR. Herethe VSR, which isin the architectural HAL, may need to
interrogate an interrupt controller to dispatch the correct ISR. The interrupt controller
may be defined by the platform or implementation HAL. Thisis normally only afew
instructions so is currently handled by conditional compilation. If this provesto
become unwieldy, a mechanism for including platform code in the architectural HAL
may be needed.

General principles

The HAL has been implemented according to the following general principles:

1. TheHAL isimplemented in C and assembler, although the eCos kernel islargely
implemented in C++. Thisisto permit the HAL the widest possible applicability.

2. All interfacesto the HAL are implemented by CPP macros. This allows them to
be implemented as inline C code, inline assembler or function callsto externa C
or assembler code. This allows the most efficient implementation to be selected
without affecting the interface. It also alows them to be redefined if the platform
HAL needsto replace or enhance a definition from the architecture HAL.

3. TheHAL provides simple, portable mechanisms for dealing with the hardware of
awide range of architectures and platforms. It is always possible to bypass the
HAL and program the hardware directly, but this may lead to aloss of portability.

Architectural HAL files

hal / ARCH arch/ V1 3 X/incl ude/ baset ype. h

Thisfile defines the properties of the base architecture that are used to compile the
portable parts of the kernel. It isincluded automatically by cyg/ i nfra/cyg_type. h.
The following definitions may be included.

eCos eCos Reference Manual n 67

The eCos Hardware Abstraction Layer (HAL)

Byte order

CYG_BYTEORDER

This definesthe byte order of the target and must be set to either CYG_LSBFI RST or
CYG_NBBFI RST.

Label translation

CYG_LABEL_NAME(nane)

Thisisawrapper used in some C and C++ files which specify labels defined in
assembly code or the linker script. It need only be defined if the default
implementation in cyg/ ker nel / kt ypes. h, which passes the name argument
unaltered, isinadequate. The most usual alternative definition of this macro
prepends an underscore to the label name. This depends on the labeling
convention of thetool set.

Base types

cyg_halint8

cyg_halint16

cyg_hal i nt 32

cyg_halint64

cyg_hal count 8

cyg_hal count 16

cyg_hal count 32

cyg_hal count 64

cyg_hal bool

These macros define the C base types that should be used to define variables of the
given size. They only need to be defined if the default types specified in
cyg/infral cyg_type. h cannot be used. Note that these are only the base types, they
will be composed with si gned and unsi gned to form full type specifications.

Atomic types

cyg_hal atoni c
CYG_ATOM C

These types are guaranteed to be read or written in a single uninterruptible operation.
It is architecture defined what size thistypeis, but it will be at |east a byte.

hal / ARCH arch/ V1 3 X/incl ude/ hal _arch. h
Thisfile contains definitions that are related to the basic architecture of the CPU.

Register save format

typedef struct HAL_SavedRegi sters
{

/* architecture-dependent list of registers to be saved */

68 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

} HAL_SavedRegi sters;
This structure describes the layout of a saved machine state on the stack. Such states
are saved during thread context switches, interrupts and exceptions. Different
guantities of state may be saved during each of these, but usually athread context state
isasubset of the interrupt state which isitself asubset of an exception state. Where
these states are significantly different, this structure should contain a union of the
three states.

Thread context initialization

HAL_THREAD | NI T_CONTEXT(sp, arg, entry, id)
This macro initializes a thread’s context so that it may be switched to by
HAL_THREAD_SW TCH_CONTEXT() . The arguments are:

Sy
A location containing the current value of the thread’s stack pointer. This should
be avariable or astructure field. The SP value will be read out of here and an
adjusted value written back.

ag
A valuethat is passed as the first argument to the entry point function.
entry

The address of an entry point function. Thiswill be called according the C calling
conventions, and the value of ar g will be passed as the first argument.

A thread id value. Thisisonly used for debugging purposes, it is ORed into the
initialization pattern for unused registers and may be used to help identify the
thread from its register dump. The least significant 16 bits of this value should be
zero to allow space for aregister identifier.

Thread context switching

HAL_THREAD SW TCH_CONTEXT(from to)
This macro implements the thread switch code. The arguments are:
from
A pointer to alocation where the stack pointer of the current thread will be stored.
to

A pointer to alocation from where the stack pointer of the next thread will be
read.

The state of the current thread is saved onto its stack, using the current value of the
stack pointer, and the address of the saved state placed in* f r om Thevaluein*t o is
then read and the state of the new thread isloaded from it.

eCos

eCos Reference Manual n 69

The eCos Hardware Abstraction Layer (HAL)

Note that interrupts are not disabled during this process, any interrupts that occur will
be delivered onto the stack to which the current value of the CPU stack pointer points.
Hence the stack pointer should never beinvalid, or loaded with a value that might
cause the saved state to become corrupted by an interrupt.

Bit indexing
HAL_LSBI T_I NDEX(i ndex, mask)
HAL_NMSBI T_I NDEX(i ndex, nask)
These macros placeini ndex the bit index of the least(most) significant bit in mask.
Some architectures have instruction level support for one or other of these operations.

If no architectural support is available, then these macros may call C functionsto do
the job.

Idle thread activity

HAL_| DLE_THREAD_ACTI ON(count)

It may be necessary under some circumstances for the HAL to execute code in the
kernel idle thread'sloop. An example might be to execute a processor halt instruction.
This macro provides a portable way of doing this. The argument is a copy of theidle
thread's loop counter, and may be used to trigger actions at longer intervalsthan every
loop.

Reorder barrier

HAL_REORDER BARRI ER()
When optimizing the compiler can reorder code. In some parts of multi-threaded
systems, where the order of actionsis vital, this can sometimes cause problems. This
macro may be inserted into places where reordering should not happen and prevents
code being migrated across it by the compiler optimizer. It should be placed between
statements that must be executed in the order written in the code.

Breakpoint support

HAL_BREAKPOI NT(| abel)
HAL_BREAKI NST
HAL_BREAKI NST_SI ZE

These macros provide support for breakpoints.

HAL_BREAKPO NT() executes abreakpoint instruction. The label is defined at the
breakpoint instruction so that exception code can detect which breakpoint was
executed.

HAL_BREAKI NST contains the breakpoint instruction code as an integer value.
HAL_BREAKI NST_SI ZE isthe size of that breakpoint instruction in bytes. Together
these may be used to place a breakpoint in any code.

70 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

GDB support
HAL_THREAD GET_SAVED REG STERS(sp, regs)
HAL_GET_GDB_REQ STERS(regval, regs)
HAL_SET_GDB_REQ STERS(regs, regval)
These macros provide support for interfacing GDB to the HAL.

HAL_THREAD_GET_SAVED_REG STERS() extractsa pointer to a

HAL_SavedRegi st er s structure from a stack pointer value. The stack pointer
passed in should be the value saved by the thread context macros. The macro will
assign apointer tothe HAL _SavedRegi st er s structure to the variable passed as
the second argument.

HAL_GET_GDB_REG STERS() trandlates aregister state as saved by the HAL and into a
register dump in the format expected by GDB. It takes a pointer to a
HAL_SavedRegi st er s structureinther egs argument and a pointer to the
memory to contain the GDB register dump inther egval argument.

HAL_SET_GDB_REG STERS() trandates a GDB format register dump into athe format
expected by the HAL. It takes a pointer to the memory containing the GDB register
dumpinther egval argument and apointertoaHAL SavedRegi st er s structure
inther egs argument.

Setjmp and longjmp support

CYGARC_JMP_BUF_SI ZE

hal _j np_buf [CYGARC_JMP_BUF_SI ZE]

hal _setjnmp(hal _j np_buf env)

hal _| ongj np(hal _j np_buf env, int val)

These functions provide support for the C set j np() and 1 ongj np() functions. Refer
to the C library for further information.

hal / ARCH arch/v1l_3 x/include/hal _intr.h
Thisfile contains definitions related to interrupt handling.

Vector numbers

CYGNUM HAL_VECTOR XXX
CYGNUM HAL_VSR M N

CYGNUM HAL_VSR MAX

CYGNUM HAL_| SR M N

CYGNUM HAL_| SR_MAX

CYGNUM HAL_EXCEPTI ON_M N
CYGNUM HAL_EXCEPTI ON_MAX
CYGNUM HAL_| SR_COUNT
CYGNUM HAL_VSR_COUNT
CYGNUM HAL_EXCEPTI ON_COUNT

All possible interrupt and exception vectors should be specified here, together with

eCos eCos Reference Manual n 71

The eCos Hardware Abstraction Layer (HAL)

maximum and minimum values for range checking.

There are two ranges of numbers, those for the vector service routines and those for
the interrupt service routines. The relationship between these two ranges is undefined,
and no equivalence should be assumed if vectors from the two ranges coincide.

The V SR vectors correspond to the set of exception vectors that can be delivered by
the CPU architecture, many of these will be internal exception traps. The | SR vectors
correspond to the set of external interrupts that can be delivered and are usually
determined by extra decoding of an interrupt controller by the interrupt V SR.

Where a CPU supports synchronous exceptions, the range of such exceptions allowed
are defined by CYGNUM_HAL_EXCEPTI ON_M Nand

CYGNUM_HAL_EXCEPTI ON_MAX. The actual exception numbers will normally
correspond to the VSR exception range. In future other exceptions generated by the
system software (such as stack overflow) may be added.

CYGNUM_HAL_| SR_COUNT, CYGNUM HAL_VSR_COUNT and
CYGNUM_HAL_EXCEPTI ON_COUNT define the number of ISRs, V SRs and
EXCEPTIONSs respectively for the purposes of defining arrays etc. There might be a
tranglation from the supplied vector numbersinto array offsets. Hence
CYGNUM_HAL XXX COUNT may not simply be CYGNUM HAL XXX MAX -
CYGNUM_HAL_XXX_M Nor CYGNUM_HAL_XXX_MAX+1.

Interrupt state control

HAL_DI SABLE_| NTERRUPTS(ol d)

HAL_RESTORE_| NTERRUPTS(ol d)

HAL_ENABLE_| NTERRUPTS()

HAL_QUERY_I NTERRUPTS(state)
These macros provide control over the state of the CPUs interrupt mask mechanism.
They should normally manipulate a CPU status register to enable and disable interrupt
delivery. They should not access an interrupt controller.
HAL_DI SABLE_| NTERRUPTS() disablesthe delivery of interrupts and storesthe original
state of the interrupt mask in the variable passed in the ol d argument.
HAL_RESTORE | NTERRUPTS() restores the state of the interrupt mask to that recorded
inol d.
HAL_ENABLE_| NTERRUPTS() simply enables interrupts regardless of the current state
of the mask.
HAL_QUERY_I NTERRUPTS() storesthe state of the interrupt mask in the variable passed
inthe st at e argument.
Itisat the HAL implementer’ s discretion exactly which interrupts are masked by this
mechanism. Where a CPU has more than one interrupt type that may be masked
separately (e.g. the ARM's IRQ and FIQ) only those that can raise DSRs need to be
masked here. A separate architecture specific mechanism may then be used to control

72 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

the other interrupt types.

ISR and VSR management

HAL_| NTERRUPT_ATTACH(vector, isr, data, object)
HAL | NTERRUPT_DETACH(vector, isr)

HAL_VSR SET(vector, vsr, poldvsr)

HAL_VSR _GET(vector, pvsr)

These macros manage the attachment of interrupt and vector service routines to
interrupt and exception vectors respectively.

HAL_| NTERRUPT_ATTACH() attachesthe ISR, data pointer and object pointer to the
given vector. When an interrupt occurs on this vector the ISR is called using the C
calling convention and the vector number and data pointer are passed to it asthe first
and second arguments respectively.

HAL_| NTERRUPT_DETACH() detachesthe ISR from the vector.

HAL_VSR_SET() replacesthe VSR attached to thevect or with the replacement
suppliedinvsr . Theold VSR isreturned in the location pointed to by pvsr .
HAL_VSR_GET() assigns acopy of the VSR to the location pointed to by pvsr .

Interrupt controller management

HAL _| NTERRUPT_MASK(vector)

HAL_| NTERRUPT_UNMASK(vect or)

HAL_| NTERRUPT_ACKNOW.EDGE(vector)

HAL | NTERRUPT_CONFI GURE(vector, level, up)

HAL | NTERRUPT_SET_LEVEL(vector, |evel)

These macros exert control over any prioritized interrupt controller that is present. If

no priority controller exists, then these macros should be empty.

HAL_| NTERRUPT_MASK() causes the interrupt associated with the given vector to be
blocked.

HAL_| NTERRUPT_UNMASK() causes the interrupt associated with the given vector to be
unblocked.

HAL_| NTERRUPT_ACKNOW.EDGE() acknowledges the current interrupt from the given
vector. Thisis usually executed from the ISR for this vector when it is prepared to
alow further interrupts. Most interrupt controllers need some form of acknowledge
action before the next interrupt is allowed through. Executing this macro may cause
another interrupt to be delivered. Whether this interrupts the current code depends on
the state of the CPU interrupt mask.

HAL_| NTERRUPT_CONFI GURE() provides control over how an interrupt signal is
detected. The arguments are:

vector
The interrupt to be configured.

eCos

eCos Reference Manual n 73

The eCos Hardware Abstraction Layer (HAL)

level
Set totrue if theinterrupt is detected by level, and f al se if it is edge triggered.

up
If theinterrupt is set to level detect, then if thisist r ue it is detected by ahigh
signal level, and if f al se by alow signal level. If the interrupt is set to edge
triggered, then if thisist rue itistriggered by arising edge and if f al se by a
falling edge.

HAL_| NTERRUPT_SET_LEVEL() provides control over the hardware priority of the

interrupt. The arguments are:

vector
The interrupt whose level is to be set.

level
The priority level to which the interrupt isto set. In some architectures the set
interrupt level is aso used as an interrupt enable/disable. Hence this function and
HAL_| NTERRUPT_MASK() and HAL_I NTERRUPT_UNMASK() may interfere with each
other.

Clock control

HAL_CLOCK_I NI TI ALI ZE(period)
HAL_CLOCK_RESET(vector, period)
HAL_CLOCK_READ(pval ue)

These macros provide control over aclock or timer device that may be used by the
kernel to provide time-out, delay and scheduling services. The clock is assumed to be
implemented by some form of counter that isincremented or decremented by some
external source and which raises an interrupt when it reaches zero.

HAL_CLOCK_I NI TI ALI ZE() initializesthe clock device to interrupt at the given period.
The period is essentially the value used to initiaize the clock counter and must be
calculated from the clock frequency and the desired interrupt rate.
HAL_CLOCK_RESET() re-initializesthe clock to provoke the next interrupt. This macro
isonly really necessary when the clock device needs to be reset in some way after
each interrupt.

HAL_CLOCK_READ() reads the current value of the clock counter and putsthe valuein
the location pointed to by pval ue. The value stored will always be the number of
clock ‘*ticks” since the last interrupt, and hence ranges between zero and the initial
period value.

hal / ARCH arch/v1_3 x/include/hal _io.h

Thisfile contains definitions for supporting access to device control registersin an
architecture neutral fashion.

74 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

Register address

HAL_| O REG STER

Thistypeis used to store the address of an 1/O register. It will normally be a memory
address, an integer port address or an offset into an 1/O space. More complex
architectures may need to code an address space plus offset pair into asingle word, or
may represent it as a structure.

Values of variables and constants of this type will usually be supplied by
configuration mechanisms.

Register read

HAL_READ XXX(register, value)

HAL_READ XXX VECTOR(register, buffer, count, stride)
These macros support the reading of 1/O registersin various sizes. The XXX
component of the name may be UINT8, UINT16, UINT32.
HAL_READ XXX() reads the appropriately sized value from the register and storesit in
the variable passed as the second argument.

HAL_READ XXX_VECTOR() readscount values of the appropriate size into buf f er .
Thest ri de controls how the pointer advances through the register space. A stride of
zero will read the same register repeatedly, and a stride of one will read adjacent
registers of the given size. Greater strides will step by larger amounts, to allow for
sparsely mapped registers for example.

Register write

HAL_WRI TE_XXX(register, value)

HAL_WRI TE_XXX_VECTOR(register, buffer, count, stride)

These macros support the writing of 1/0 registersin various sizes. The XXX component
of the name may be Ul NT8, Ul NT16, Ul NT32.

HAL_WRI TE_XXX() writesthe appropriately sized value from the variable passed asthe
second argument stored it in the register.

HAL_WRI TE_XXX_VECTOR() writescount values of the appropriate size from

buf f er. Thest ri de controls how the pointer advances through the register space.
A stride of zero will write the same register repeatedly, and a stride of one will write
adjacent registers of the given size. Greater strides will step by larger amounts, to
alow for sparsely mapped registers for example.

hal / ARCH arch/v1_3 x/include/ hal cache. h

Thisfile contains definitions for supporting control of the caches on the CPU.

There are versions of the macros defined here for both the Data and Instruction
caches. these are distinguished by the use of either DCACHE or ICACHE in the
macro hames. In the following descriptions, XCACHE is also used to stand for either

eCos

eCos Reference Manual n 75

The eCos Hardware Abstraction Layer (HAL)

of these. Where there are issues specific to aparticular cache, thiswill be explained in
the text.

There might be restrictions on the use of some of the macros which it is the user’s
responsibility to comply with. Such restrictions are documented in the hal _cache. h
file.

Note that destructive cache macros should be used with caution. Preceding a cache
invalidation with a cache synchronization is not safe in itself since an interrupt may
happen after the synchronization but before the invalidation. This might cause the
state of dirty datalines created during the interrupt to be lost.

Depending on the architecture’s capabilities, it may be possible to temporarily disable
the cache while doing the synchronization and invalidation which solves the problem
(no new data would be cached during an interrupt). Otherwise it is necessary to
disable interrupts while manipulating the cache which may take along time.

Some platform HALs now support a pair of cache state query macros:

HAL_| CACHE | S ENABLED(x) and HAL_DCACHE | S ENABLED(x) which set the
argument to true if the instruction or data cache is enabled, respectively. Like most
cache control macros, these are optional, because the capabilities of different targets
and boards can vary considerably. Code which usesthem, if it isto be considered
portable, should test for their existence first by means of #i f def . Be sure to include
<cyg/ hal / hal _cache. h> in order to do this test and (maybe) use the macros.

Cache dimensions

HAL_XCACHE_SI ZE
HAL_XCACHE_LI NE_SI ZE
HAL_XCACHE_WAYS
HAL_XCACHE_SETS

These macros define the size and dimensions of the Instruction and Data caches.
HAL_XCACHE_SIZE
givesthe total size of the cache in bytes.
HAL_XCACHE_LINE_SIZE
givesthe cache line size in bytes.
HAL_XCACHE_WAYS

gives the number of waysin each set and definesitslevel of associativity. This
would be 1 for a direct mapped cache.

HAL_XCACHE_SETS
gives the number of setsin the cache, and is derived from the previous values.

Global cache control
HAL_XCACHE_ENABLE()

76 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

HAL_XCACHE_DI SABLE()
HAL_XCACHE_| NVALI DATE_ALL()
HAL_XCACHE_SYNC()
HAL_XCACHE_BURST_SI ZE(si ze)
HAL_DCACHE_WRI TE_MODE(node)
HAL_XCACHE_LOCK(base, size)
HAL_XCACHE_UNLOCK(base, size)
HAL_XCACHE_UNLOCK_ALL()

These macros affect the state of the entire cache, or alarge part of it.

HAL_XCACHE_ENABLE() and HAL_XCACHE_DISABLE()
enable and disable the cache.

HAL_XCACHE_INVALIDATE_ALL()

causes the entire contents of the cache to be invalidated. Depending on the
hardware, this may require the cache to be disabled during the invalidation
process. If so, the implementation must use HAL_XCACHE IS ENABLED to
save and restore the previous state.

HAL_XCACHE_SYNC()

causes the contents of the cache to be brought into synchronization with the
contents of memory. In some implementations this may be equivalent to
HAL_XCACHE_INVALIDATE_ALLJ().

HAL_XCACHE_BURST_SIZE()

alows the size of cache to/from memory bursts to be controlled. This macro will
only be defined if this functionality is available.

HAL_DCACHE_WRITE_MODE()

controls the way in which data cache lines are written back to memory. There will
be definitions for the possible modes. Typical definitions are
HAL_DCACHE_WRITEBACK_MODE and

HAL_DCACHE WRITETHRU_MODE. This macro will only be defined if this
functionality is available.

HAL_XCACHE_LOCK()

causes data to be locked into the cache. The base and size arguments define the
memory region that will be locked into the cache. It is architecture dependent
whether more than one locked region is allowed at any one time, and whether this
operation causes the cache to cease acting as a cache for addresses outside the
region during the duration of the lock. This macro will only be defined if this
functionality is available.

HAL_XCACHE_UNLOCK()
cancels the locking of the memory region given. This should normally correspond

eCos

eCos Reference Manual n 77

The eCos Hardware Abstraction Layer (HAL)

to aregion supplied in amatching lock call. This macro will only be defined if this
functionality is available.

HAL_XCACHE_UNLOCK_ALL()

cancels all existing locked memory regions. This may be required as part of the
cache initialization on some architectures. This macro will only be defined if this
functionality is available.

Cache line control

HAL_DCACHE_ALLOCATE(base , size)

HAL_DCACHE_FLUSH(base , size)

HAL_XCACHE_| NVALI DATE(base , size)

HAL_DCACHE_STORE(base , size)

HAL_DCACHE_READ HI NT(base , size)

HAL_DCACHE_WRI TE_HI NT(base , size)

HAL_DCACHE_ZERQ(base , size)

All of these macros apply a cache operation to all cache lines that match the memory
address region defined by the base and size arguments. These macros will only be
defined if the described functionality is available. Also, it is not guaranteed that the
cache function will only be applied to just the described regions, in some architectures
it may be applied to the whole cache.

HAL_DCACHE_ALLOCATE()

alocates linesin the cache for the given region without reading their contents
from memory, hence the contents of the lines is undefined. Thisis useful for
preallocating lines which are to be completely overwritten, for examplein ablock
copy operation.
HAL_DCACHE_FLUSH()
invalidates all cache linesin the region after writing any dirty linesto memory.
HAL_XCACHE_INVALIDATE()
invalidates all cachelinesin the region. Any dirty lines are invalidated without
being written to memory.
HAL_DCACHE_STORE()
writes all dirty lines in the region to memory, but does not invalidate any lines.
HAL_DCACHE_READ_HINT()
hints to the cache that the region is going to be read from in the near future. This
may cause the region to be speculatively read into the cache.
HAL_DCACHE_WRITE_HINT()

hints to the cache that the region is going to be written to in the near future. This
may have the identical behavior to HAL_DCACHE_READ_HINT().

78 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

HAL_DCACHE_ZERO()

alocates and zeroes lines in the cache for the given region without reading
memory. Thisisuseful if alarge area of memory is to be cleared.

hal / ARCH arch/v1l 3 x/src/ARCH. | d

Thisisthe architecture specific linker script file. It defines the section types required
for the architecture. During preprocessing, the memory layout specified for the chosen
platform and startup type isincluded, defining region, alignment and location
parameters for the sections.

hal / ARCH arch/v1_3 x/src/vectors. S

Thisfile contains code to deal with exception and interrupt vectors. Since the reset
entry point is usually implemented as one of these it also deals with system startup.

The exact implementation of this code is under the control of the HAL implementer.
So long asit interacts correctly with the macros defined in hal _i nt r. h it may take
any form. However, al current implementation follow the same pattern, and there
should be avery good reason to break with this. The rest of this section describes how
the standard HAL implementation operates.
Thisfile usually contains the following sections of code:

Startup and initialization code.

Exception delivery.

Default handling of synchronous exception.

Default handling of interrupts.

HAL startup

Execution normally begins at the reset vector with the machine in aminimal startup
state.
Thefollowing isalist of the jobs that need to be done in approximately the order in
which they should be accomplished. Many of these will not be needed in some
configurations.
Initialize various CPU status registers. Most importantly, the CPU interrupt mask
should be set to disable interrupts.
Set up any CPU memory controller to access RAM, ROM and I/O devices
correctly. Until thisis done it may not be possible to access RAM.
Enable the cache, if it isto be used. This may require enabling the CPU’s memory
management system since that is often the only way of controlling the
cacheability of memory. If thisis necessary, adirect one-to-one mapping between
physical and virtual memory is most desirable.
Set up the stack pointer, this allows subsequent initialization code to make
procedure calls.

eCos

eCos Reference Manual n 79

The eCos Hardware Abstraction Layer (HAL)

Initialize any global pointer register needed for accessto globally defined
variables. This allows subsequent initialization code to access global variables.

Perform any platform specific initialization. Thisis best accomplished by calling
an initialization routine in PLATFORM S (see
“hal / ARCH PLATFORM v1 3 x/src/ PLATFORM S’ on page 83).

If the system is starting from ROM, copy the ROM template of the . dat a section
out to its correct positionin RAM. (See
“hal / ARCH arch/v1_3 x/src/ ARCH. | d” on page 79).

Zero the BSS section.

Create a suitable C call stack frame.

Call cyg_hal _i nvoke_const ruct or s() to run any static constructors.
Call cyg_start().If cyg_start () returns, drop into an infinite loop.

Vectors and VSRs

The CPU deliversall exceptions whether synchronous or interruptsto a set of vectors.
Depending on the architecture, these may be implemented in a number of different
ways. Examples of existing mechanisms are:

PowerPC
Exceptions are vectored to locations 256 bytes apart starting at either zero or

0xFFF00000. There are 16 such vectors defined by the architecture and extra
vectors may be defined by specific implementations.

MIPS
All exceptions are vectored to a single address and software is responsible for
reading the exception code from a CPU register to discover its true source.
MN10300
External interrupts are vectored to an address stored in one of seven interrupt
vector registers. These only supply the lower 16 bits of the address, the upper 16
bits are fixed to 0x4000XXXX. Hence the service routine is constrained to the 64k
range starting at 0x40000000.
Pentium
Exceptions are delivered via an Interrupt Descriptor Table (IDT) whichis
essentially anindirection table indexed by exception type. The IDT may be placed
anywherein memory. In PC hardware the interrupt controller can be programmed
to deliver the external interrupts to ablock of 16 vectors at any offset in the IDT.
680X 0

Exceptions are delivered via an indirection table described by a CPU base register
(for X > 0). External interrupts are either delivered via a set of level-specific

80 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

vectors defined by the architecture, or a vector number may be supplied by the

device in which case another entry in the table may be used.
The model adopted by the HAL is that VSRs should be easily replaceable with a
pointer to an alternative routine. Of the above architectures, only the Pentium and
680X 0 alow thisdirectly in the hardware. In the other three, extra softwareis
required. The code attached directly to the vector is a short trampoline that indirects
by way of aHAL supplied VSR table to the true V SR. In the PowerPC and MN 10300
the table offset isimplicit in the vector routine called, for the MIPS the code reads the
cause register and indirects through the appropriate table entry.

Default exception handling

Most synchronous exception vectors will point to a default exception VSR which is
responsible for handling all exceptions in ageneric manner.

Since most exceptions handled by thisV SR are errors (or breakpoints when a program
is being debugged), its default behavior should be to save the entire machine state,
disable interrupts, and invoke the debugger’s entry point, passing it a pointer to the
saved state.

If the debugger returns then the saved state is restored and the interrupted code
resumed. Since the debugger may adjust the saved state whileit runs a little care must
be taken to restore the state correctly.

Default interrupt handling

Most external interrupt vectors will point to adefault interrupt VSR which decode the
actual interrupt being delivered and invokes the appropriate ISR.
The default interrupt V SR has a number of responsibilitiesif it is going to interact
with the Kernel cleanly and allow interrupts to cause thread preemption.
To support this VSR an ISR vector table is needed. For each valid vector three
pointers need to be stored: the ISR, its data pointer and an interrupt object pointer
needed by the kernel. It isimplementation defined whether these are stored in asingle
table of triples, or in three separate tables.
The VSR should follow the following approximate plan:
Save the CPU state. In non-debug configurations, it may be possible to get away
with saving |ess than the entire machine state.
Increment the kernel scheduler lock. Thisis a static member of the
Cyg_Scheduler class. It may be necessary to look at a objdump or assembler
listing of sched. cxx to discover its mangled label.
(Optional) Switch to an interrupt stack if not aready running on it. This alows
nested interrupts to be delivered without needing every thread to have a stack
large enough to take the maximum possible nesting. It isimplementation defined

eCos

eCos Reference Manual n 81

The eCos Hardware Abstraction Layer (HAL)

how to detect whether thisis a nested interrupt.
(Optional) Re-enabl e interrupts to permit nesting.

Decode the actua external interrupt being delivered from the interrupt controller.
Thiswill yield the ISR vector number.

Using the ISR vector number as an index, retrieve the ISR pointer and its data
pointer from the ISR vector table.

Construct a C call stack frame.

Call the ISR, passing the vector number and data pointer. The vector number and
apointer to the saved state should be preserved across this call, preferably by
storing them in registers that are defined to be callee-saved by the calling
conventions.
If thisisan un-nested interrupt and a separate interrupt stack is being used, switch
back to the interrupted thread's own stack.
(Optional) If interrupts were not enabled above, enable them here since the
i nterrupt_end() function must be called with interrupts enabled.
Use the saved | SR vector number to get the interrupt object pointer from the ISR
vector table.
Calinterrupt _end() passing it the return value from the ISR, the interrupt
object pointer and a pointer to the saved CPU state. This function isimplemented
by the Kernel and is responsible for finishing off the interrupt handling.
Specifically, it may post a DSR depending on the ISR return value, and will
decrement the scheduler lock. If the lock is zeroed by thisthen it may result in a
thread context switch.
Wheni nt errupt _end() returns, restore the machine state and resume execution
of the interrupted thread. Depending on the architecture, it may be necessary to
disable interrupts again for part of this.

The detailed order of these steps may vary dlightly depending on the architecture, in

particular where interrupts are enabled and disabled.

hal / ARCH arch/v1_3 x/src/hal _msc.c

Thisfile contains any miscellaneous functions that are reference by the HAL. Typical

functions that might go here are C implementations of the |east- and most- significant

bit index routines, constructor calling functions such as

cyg_hal _i nvoke_construct ors() and support routines for the exception and

interrupt vector handling.

hal / ARCH PLATFORM v1_3_x/i ncl ude/ pkgconf/ STARTUP. m t

For each startup type (STARTUP) the memory layout of the sectionsis defined. This
information may be edited using the Configuration Tool only.

82 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

hal / ARCH PLATFORM v1_3_x/i ncl ude/ pkgconf/ STARTUP. | di
For each startup type (STARTUP) the memory layout of the sectionsis exported by
the Configuration Tool asalinker script fragment suitable for inclusion within the
architecture-specific linker script file during preprocessing. The linker script fragment
to beincluded is specified by the CYGHWR_MEMORY_LAYOUT _LDI macroin
the syst em h header file. The linker script fragments will be overwritten by the
Configuration Tool and should only edited manually where the Configuration T ool
isnot in use.

hal / ARCH PLATFORM v1_3_ x/incl ude/ hal _di ag. h
During early development it is useful to have the ability to output messages to some
default destination. This may be a memory buffer, a simulator supported output
channel, aROM emulator virtual UART or aserial line. Thisfile defines set of macros
that provide ssimple, polled output for this purpose.
HAL_DI AG | NI T() performsany initialization required on the device being used to
generate diagnostic output. This may include setting baud rate, and stop, parity and
character bits.
HAL_DI AG WRI TE_CHAR(c) writesthe character supplied to the diagnostic output
device.
These macros may either implement the required functionality directly, or may call
functions elsewhere in the HAL to do it. In the latter case these should be in thefile
hal/ARCH/PLATFORM/v1_3 x/src/ha_diag.c.

hal / ARCH PLATFORM v1_3_x/ src/ PLATFORM S
Thisisaplatform specific assembly code file. Its main purpose is to contain any
platform specific startup code called from vect or s. S.

hal / ARCH PLATFORM v1_3_x/src/context.S
If present, thisis an assembly code file that contains the code to support thread
contexts. The routines to switch between various contexts, aswell asinitialize athread
context may be present in thisfile.

hal / ARCH PLATFORM v1_3_x/src/ hal _di ag. c

If present, this file contains the implementation of the HAL diagnostic support
routines.

Future developments

The HAL is not complete, and will evolve and increase over time. Among the
intended developments are:
Common macros for interpreting the contents of a saved machine context. These
would allow portable code, such as debug stubs, to extract such values as the

eCos eCos Reference Manual n 83

The eCos Hardware Abstraction Layer (HAL)

program counter and stack pointer from a state without having to interpret a
HAL SavedRegi st er s structure directly.

Debugging support. Macrosto set and clear hardware and software breakpoints.
Access to other areas of machine state may also be supported.

Floating point support. The saving and restoring of floating point state may need
to added to the HAL for those architectures that support it. The exact mechanisms
provided need to be defined.

Static initialization support. The current HAL provides a dynamic interface to
things like thread context initialization and | SR attachment. We also need to be
able to define the system entirely statically so that it isready to go on restart,
without needing to run code. Thiswill require extra macros to define these
initializations. Such support may have a consequential effect on the current HAL
specification.

CPU state control. Many CPUs have both kernel and user states. Althoughiit is not
intended to run any code in user state for the foreseeable future, it is possible that
this may happen eventually. If thisisthe case, then some minor changes may be
needed to the current HAL API to accommodate this. These should mostly be
extensions, but minor changes in semantics may also be required.

Physical memory management. Many embedded systems have multiple memory
areas with varying properties such as base address, size, speed, bus width,
cacheability and persistence. An AP is heeded to support the discovery of this
information about the machine's physical memory map.

Memory management control. Some embedded processors have a memory
management unit. In some cases this must be enabled to allow the cache to be
controlled, particularly if different regions of memory must have different caching
properties. For some purposes, in some systems, it will be useful to manipul ate the
MMU settings dynamically.

Power management. Macros to access and control any power management
mechanisms available on the CPU implementation. These would provide a
substrate for a more general power management system that also involved device
drivers and other hardware components.

Generic serial line macros. Most seria line devices operate in the same way, the
only real differences being exactly which bits in which registers perform the
standard functions. It should be possible to develop a set of HAL macros that
provide basic serial line services such as baud rate setting, enabling interrupts,
polling for transmit or receive ready, transmitting and receiving data etc. Given
these it should be possible to create a generic serial line device driver that will
alow rapid bootstrapping on any new platform. It may be possible to extend this
mechanism to other device types.

84 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

Porting Guide. Asthe HAL developsit will become important to perform a port to
anew architecture in the correct way.

Kernel porting notes

This section briefly describes the issuesinvolved in porting eCos to a new target
platform and/or architecture.

Porting overview

The effort required to port eCosto anew target varies. Adding support for a new
platform/board may require almost no effort, while adding support for a new
architecture is more demanding. Additionally, new device drivers may have to be
written if there is no existing support for the target’ s devices.

Given that there are usually more target platforms using the same microprocessor or
microcontroller, adding eCos support for a new target would often be a question of
adding support for the new target platform. The architectures supported by eCos
include the following: ARM7, MIPS (TX39), MN10300, PowerPC (MPC8xx), and
SPARClite.

Adding a new architecture support is a bigger job and also requires tool support
(GCC, GDB and hinutils) which is abig undertaking in itself.

Platform support

Adding support for a new platform requires (a subset of):

Adding eCos configuration information.

Memory layout description.

Memory controller initialization.

Interrupt controller handling.

Minimal serial device driver for GDB interaction and simple diagnostics output.
System timer initialization and control.

Wallclock driver.

A wallclock emulation based on the system timer is provided with the standard
eCos distribution. For those hardware platforms where a battery backed-up clock
device or other means of determining actual wallclock time exists, awallclock
driver may be implemented more fully.
If the architecture in question is amicrocontroller (as opposed to a microprocessor),
the job of porting may be as simple as adding configuration information and defining
anew memory layout (items one and two). Currently eCos supports the following

N o s wDdhPE

eCos

eCos Reference Manual n 85

The eCos Hardware Abstraction Layer (HAL)

microcontrollers; MN10300, MPC8xx, and TX39.

Architectural support

Adding support for a new architecture requires:
1. Adding eCos configuration information.

2. Writing aHAL for the CPU core's register model, interrupt and exception model,
cache model, and possibly simple handling for the MMU model.

3. For microcontrollers the HAL should also support the memory controller,
interrupt controller and a possible on-MCP seria controller for GDB interaction
and simple diagnostics output, system timer initialization and control, and a
wallclock driver.

If thereis already support for amember of the same architecture family, the porting

job may just consist of adding extrafeature support to the existing HAL. Or if the new

target architecture only defines a subset of the architecture family, the HAL may need

additional configuration control, allowing parts of the existing HAL code to be

disabled.

Adding configuration information

Architecture and platform configuration information resides in two top-level files
target s and packages aswell asin architecture and platform specific configuration
files (hal / <ar ch>/ ar ch/ current/i ncl ude/ pkgconf / hal _<ar ch>. h and

hal / <arch>/ <pl atf or m»/ current/i ncl ude/ pkgconf/ hal _<arch>_<pl at for n». h.
Furthermore, each platform must define memory layouts for each startup type.

targets

Architecture and platform information must be added to the t ar get s file.
target powerpc {

alias { Power PC power pc-eabi }
conmmand_pr efi x power pc- eabi
packages { CYGPKG_HAL_PONERPC }
hal hal / power pc/ arch
cflags {
ARCHFLAGS "-mcpu=860 -D _SOFT_FLOAT"
ERRFLAGS "-Wall -Wpointer-arith -Wtrict-prototypes -Wnline
- Windef "
CXXERRFLAGS "-Wbver | oaded-virtual "
LANGFLAGS "-ffunction-sections -fdata-sections"
DBGFLAGS "-g -Q2"
CXXLANGFLAGS "-fno-rtti -fno-exceptions -fvtable-gc -finit-priority"
LDLANGFLAGS "-W,--gc-sections -W, -static"

86 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

pl at form cogent {

alias { "Cogent board" }
startup { ramrom stubs }
packages {

CYGPKG_HAL_POWERPC_COGENT
CYGPKG_DEVI CES_WALLCLOCK
CYGPKG_DEVI CES_WATCHDOG

pkgconf usestheentriesint ar get s to create abuild tree. The --target option matches
target name (power pc) or its aliases (Power PC power pc- eabi), just as the --platform
option matches platform name (cogent) or its aliases (Cogent boar d). The sameis
true for the --startup option which matches on the list of valid startup types (r am r om
and st ubs).

The comand_pr ef i x isthe prefix on the cross compiler tools, usualy the same target
triplet used when configuring the tools (power pc- eabi).

packages lists the hardware-related packages that should be enabled if thistarget is
selected. Typically thiswill just be the appropriate architectural HAL package
provided for this architecture (CYGPKG_HAL_POWERPC), while hal specifiesthe relative
path of the sourcefiles.

cf | ags specifies the compiler and linker flags. The -finit-priority flag is required for
proper initialization of eCos, while -ffunction-sections, -fdata-sections, and
-WI,--gc-sections are required to provide linker garbage collection which removes
functions and initialized datathat are not going to be used. The other FLAGS definitions
can be set according to preference, taking care to ensure that ARCHFLAGS contains all
necessary flags for the particular architecture.

Thepl at f or moption is used to define a new target platform. There can be several of
these for each architecture. The name and startup types are defined using pl at f or m
al i as, and st ar t up as described above. packages defines the set of packages
supported by this particular platform. This set must include the platform HAL package
(CYGPKG_HAL_POWERPC_COGENT), but can hame other packages

(CYGPKG_DEVI CES_WALLCLOCK and CYGPKG_DEVI CES_WATCHDOG) which will be
enabled per default when selecting this architecture/platform configuration.

packages
Theindividual packages must be defined in the packages file.
package CYGPKG HAL_PONERPC {

alias { "Power PC common HAL" hal _power pc power pc_hal
power pc_arch_hal }
directory hal / power pc/ arch

eCos eCos Reference Manual n 87

The eCos Hardware Abstraction Layer (HAL)

include_dir cyg/ hal
har dwar e

}

package CYGPKG HAL_POAERPC COGENT {

alias { "Power PC Cogent board support" hal _powerpc_cogent
power pc_cogent _hal }

directory hal / power pc/ cogent

include_dir cyg/ hal

har dwar e

These are the definitions of the two packages named in thet ar get s file. The aliases
can be used with the --disable- and --enable- options of pkgconf.

di rect ory specifiesthe relative path of the sourcefiles, i ncl ude_di r where header
files provided by the package should be copied to in theinstall directory, and

har dwar e specifies that these packages is normally associated with specific hardware
and should only be enabled for the appropriate hardware.

Package-specific configuration

The package-specific configuration files provide presentation information used by the
Configuration Tool, dependencies on other packages and of course additional
fine-grained options that are architecture and/or target specific. See the two files

hal / power pc/ arch/ current/incl ude/ pkgconf/ hal _power pc. h and

hal / power pc/ cogent/ current/ i ncl ude/ pkgconf/ hal _power pc_cogent . h for an
example.

Memory layout information

For each target platform must be defined the memory layout used for any given
startup type. Thisinformation resides in two files

mt_<arch> <platforne_<startup>.|di and

m t _<arch>_<pl at f or mp_<st artup>. m t inthe directory

hal / <ar ch>/ <pl at f or n®/ current / i ncl ude/ pkgconf /. Theformer isalinker script
fragment, the latter afile describing the layout for the eCos Configuration Tool.
Redefining the memory layout can be done in the Configuration Tool, which will
create the linker script (the . 1 di file). It isaso possibleto do by hand, in which case
only the linker script should be created; when no . mi t file exists, the Configuration
Tool will not overwrite the default linker script.

Platform porting

Platform porting basically consists of making a copy of an existing platform directory
and changing the code to match the new platform. The header and sourcefilesin the
platform directory and their contents are described in “ Architectural HAL files’

88 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

on page 67.

In particular the configuration information and memory layout need changing, as may
the board initialization code and the minimal serial drivers used by hal _di ag. ¢ and
pl f _stub.c.

Another useful reference for porting to a new platform isthe GNUPro documentation
on gdb stubs, which can be found at

http://ww. cygnus. com pubs/ gnupr o/ 3_GNUPro_Debuggi ng_Tool s/ b_Debuggi ng
_wi th_CGDB/ gdbThe_CDB renote_serial _protocol . htm

Architectural porting

The easiest way to make a new architectural port of eCosisto make a copy of an
existing HAL and change the code to suit the new CPU. This guide will use the
PowerPC Cogent board as an example. Wherever powerpc, ppc, or cogent is
mentioned in this guide or in the source files, you should replace the strings with
appropriate architecture and platform names. There are also afew files that need
renaming.

If thereis simulator support for the new CPU it is possible to test big parts of the HAL
and therest of the eCos kernel before aport to a specific platform is attempted. Thisis
an advantage as doing a platform port can cause problems of it own, making it
difficult to determine whether the architectural or platform parts of the port in
progress are to blame when something is not working properly.

When no simulator support exists, the starting point of a port isto produce aminimal
GDB stub for the target platform, which will allow code to be downloaded, executed
and/or debugged on the board. This guide is based on a situation where no simulator
exists asit would be the most likely scenario.

Writing an eCos GDB stub

A GDB stub has both aarchitectural part (description of the CPUs registers, exception
decoding, breakpoint and stepping model, etc.) and a platform part (board
initialization and simple serial driver).

Writing astub is a subset of the work required to afull architectural and platform port
of the HAL (and thus eCaos). The below sections will be arough list of minimal
requirements for a stub; remaining elements of the files can be fleshed out when
extending the port to include full eCos functionality. The files and their contents are
described in “ Architectural HAL files” on page 67.

TIP If thetarget board has an existing download stub (not necessarily GDB
compliant), the GDB stub can be tested by changing it to run from RAM
rather than ROM (using r amstartup instead of st ubs startup).

After downloading the stub and starting it, it should be possible to connect

eCos

eCos Reference Manual n 89

The eCos Hardware Abstraction Layer (HAL)

GDB to the target. Note that trying to download another application may
cause the memory of the stub to be overwritten, so some consideration is
required when defining the memory layout.

If the target board does not have an existing download stub and requires anew
EPROM to be burned for each testing cycle, you may want to start with
writing a minimal stub which can only be used for downloading data to the
target board.

For this purpose you can skip the exception support codein vect ors. S and
hack hal / common/ cur rent / src/ st ubr omi st ubr om ¢ to jump directly to the
stub code without using a breakpoint.

TIP Whileworking on improving the stub code or other parts of the HAL you can
use the simpl e diagnostics output functions (by way of diag_printf) asacrude
way of providing debugging feedback until you get full GDB stub
functionality in place.

TIP A good way of debugging the stub itself isto enable remote debugging in
GDB (set renotedebug 1). This makes GDB display any communication
between itself and the stub on the target. Consult the GDB filer enot e. ¢ for
details on the protocol.

Architecture files
i ncl ude/ basetype. h

Implement in full. Little effort.
i nclude/ hal _arch. h

The following macros are required for the stub: HAL_SavedRegi st er s,
HAL_BREAKPO NT, HAL_BREAKI NST, HAL_BREAKI NST_SI ZE,
HAL_GET_GDB_REG STERS, and HAL_SET_GDB_REG STERS.

i ncl ude/ hal _cache. h
The macrosin thisfile can be left as empty if caches are kept disabled. Thisis
definitely the best way to start porting, avoiding cache problems entirely. The
cacheis not of much use until eCos can be used with applications anyway.

i nclude/hal _intr.h
It is necessary to implement enough exception handling code to properly handle
breakpoints.

Asthe porting job progresses, asynchronous break points
(CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT) may comein handy.
These require aminimal interrupt system to bein place.

i nclude/ hal _io.h

Should be fully implemented. Usually zero effort.

90 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

i ncl ude/ <arch>_regs. h
Can befilled in piecemeal as the porting job progresses.

i ncl ude/ <arch>_stub. h
Redefine NUVREGS, REGSI ZE, and r egnanes using the same register layout as
GDB. The register definitions can be found in the conf i g/ <ar ch>/t m <ar ch>. h
filein the GDB sources. The definitions for the PowerPC were found in
config/rs6000/tmrs6000. h.
Discrepancies between what GDB expects and what is defined in the stub will
show up when you use thei nf o reg command in GDB (and know what the

register contents on the target should be). Be careful to get the REGSI ZE macro
defined correctly.

src/context.c
Nothing here required by the stub.
src/hal _msc.c
Thetwo functionscyg_hal _i nvoke_constructors and
cyg_hal _excepti on_handl er must be implemented. The former isthe same on
most architectures and the latter just needsto call __handl e_except i on.
src/<arch>.1d
The linker script must be properly defined.
src/ <arch>_stub. c
Thisfile must be fully implemented.
__conput eSi gnal can be defined to just return SIGTRAP as aminimal
implementation. Proper signal decoding may help debugging though.
Single-stepping can beimplemented in one of two ways. Some architectures (such
as the PowerPC) have hardware support to control single-stepping making it
simple to implement. Other architectures require use of breakpoints to implement
the functionality, which requires instruction decoding. Examples of the latter

approach can be found in the ARM, MIPS, and MN10300 stubs. Implementing
instruction decoding obviously requires more effort.

src/vectors. S
Thisisthe corefile of the architecture HAL. It is hard to define what the minimal
implementation requirements are for stubs to work. It may be worth and/or
necessary to do afull implementation of thisfile to start with, but here are some
pointers anyway.

_start asdefined for the PowerPC is about the minimum requirement, but you
can ignore MMU and cache setup while working on the stub.

eCos

eCos Reference Manual n 91

The eCos Hardware Abstraction Layer (HAL)

__defaul t _exception_vsr andrestore_state must preserve enough state to
alow breakpointswithout trashing CPU state for the application code. If you need
asynchronous GDB breakpoints __def aul t _i nt err upt _vsr must also be defined
well enough to allow interrupts without trashing the CPU state of the interrupted
application code.

Assorted tables also need to be defined, depending on how much of the exception
and interrupt handlers isimplemented.

Platform files
i ncl ude/ hal _di ag. h

Shouldn't require any changes.
i nclude/ pl f_stub.h

Thisfile provides the interface to the platform stub functions for the
generi c- st ub. ¢ code.

The minimal stub (no asynchronous GDB breakpaints) only requires
HAL_STUB_PLATFORM | NI T_SERI AL, HAL_STUB_PLATFORM GET_CHAR, and
HAL_STUB_PLATFORM PUT_CHAR and the matching functionsin pl f _st ub. ¢ to be
defined.

src/<platform. c

Thisfile defineshal _har dwar e_i ni t which takes care of initializing the board.
For the Cogent board this includes watchdog initialization and memory controller
setup. Other boards may have different requirements.

src/ hal _diag.c

Thisfile defines three functions that provide simple diagnostics output;

hal _diag_init,hal _diag_wite_char,andhal _di ag_read_char. Normally
these would implement avery simple seria driver. They could also address an
LCD or just some LEDs.

The simple serial driver for the Cogent board isimplemented in a separatefile,
cme_ser . ¢, Which is shared with the pl f _st ub. ¢ file.

src/plf_stub.c

Thisfile implements the seria driver needed by the GDB stub. The minimal stub
only requiresi ni t, put ¢, and get ¢ functions. A stub which supports
asynchronous breakpoints also requires functions to handle serial interrupts. For
example implementations see cna_ser . ¢ or thepl f _st ub. ¢ filefor the
MN10300 stdeval 1 board.

92 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)

Building the stub

1
2.

Prepare a build directory, configuring eCosfor st ubs startup.

Disable all packages except eCos common HAL, infrastructure, <arch> common
HAL, and <arch> <platform> board support.

Disable the HAL common options

CYGFUN_HAL_COMMON_KERNEL_SUPPORT and
CYGDBG_HAL_DEBUG_GDB_THREAD_ SUPPORT.

Enable the HAL common option
CYGDBG_HAL DEBUG_GDB_INCLUDE_STUBS

4,
5.

Build libtarget.

Change to the directory hal / conmon/ cur rent / sr ¢/ st ubr omand type make. This
should result in an eCos GDB stub image file called st ubr om This can be
converted to SRECord or binary format (using obj copy) which can be used by
EPROM burner or PROM emulator software.

Filling in the blanks

When a GDB stub has been written and is working, finishing the HAL port is pretty
much a question of completing the header files and writing the functions that were not
needed for the stub.

eCos

eCos Reference Manual n 93

eCos Interrupt Model

eCos Interrupt Model

This chapter describes the eCos interrupt model in detail.

Interrupt handling is an important part of most real-time systems. Timely handling of
interrupt sources is important. This can be severely impacted by certain activities that
must be considered atomic (i.e. uninterruptible). Typically these activities are
executed with interrupts disabled. In order to keep such activities to aminimum and
alow for the smallest possible interrupt latencies, eCos uses a split interrupt handling
scheme. In this scheme, interrupt handling is separated into two parts. Thefirst part is
known as the Interrupt Service Routine or ISR. The second part isthe Deferred
Service Routine or DSR. This separation explicitly allows for the DSRsto be run with
interrupts enabled, thus allowing other potentially higher priority interrupts to occur
and be processed while processing alower priority interrupt.

In order for this modd to work, the ISR should run quickly. If the service
requirements for the interrupt are small, the interrupt can be completely handled by
the ISR and no DSR isrequired. However, if servicing the interrupt is more complex,
aDSR should be used. The DSR will be run at some later time, at the point when
thread scheduling is alowed. Postponing the execution of DSRs until thistime allows
for simple synchronization methods to be used by the kernel.

Further, this controlled calling — when thread scheduling is allowed — means that
DSRs can interact with the kernel, for example by signalling that an asynchronous
operation has completed.

In order to allow DSRsto run with interrupts enabled, the | SR for a particul ar interrupt

94 n eCos Reference Manual eCos

eCos Interrupt Model

source (or the hardware) must arrange that that interrupt will not recur until the DSR
has completed. In some cases, thisis how the hardware works. Once an interrupt is
delivered another interrupt will not occur until re-enabled. In the general case,
however, itisup to the ISR to enforce this behavior. Typically the ISR will "mask" the
interrupt source, thus preventing its recurrence. The DSR will then unmask the
interrupt when it has been serviced thus allowing new occurrences of the interrupt to
be delivered when they happen.

Alternatively, if an ISR isdoing very little per interrupt, for example transferring one
byte from memory to an IO device, it may only be necessary to interact with the rest of
the system when a"transfer" is complete. In such a case an ISR could execute many
times and only when it reaches the end of abuffer does it need to request execution of
itsDSR.

If the interrupt sourceis "bursty", it may be OK for several interrupts and callsto the
ISR to occur before a requested DSR has been executed; the kernel maintains counts
for posted DSRs, and in such a case the DSR will eventually be called with a
parameter that tells it how many | SRs requested that the DSR be called. Careis
needed to get the interrupt code right for such asituation, for one call tothe DSR is
required to do the work of several.

As mentioned above, the DSR will execute at some later time. Depending on the state
of the system, it may be executed at a much later time. There are periods during
certain kernel operations where thread scheduling is disabled, and hence DSRs are not
allowed to operate. These periods have been purposefully made as limited as possible
in the eCos kernel, but they till exist. In addition, user threads have the ability to
suspend scheduling as well, thus affecting the possible DSR execution latency. If a
DSR cannot be executed sufficiently quickly, the interrupt source may actually
overrun. Thiswould be considered a system failure.

One of the problems system designers face is how much stack space to alow each
thread in the system. eCos does not dictate the size of thread stacks, it isleft to the
user when the thread is created. The size of the stack depends on the thread
requirements as well as some fixed overhead required by the system. In this case, the
overhead is enough stack space to hold a complete thread state (the actual amount
depends on the CPU architecture). Guidelines for the minimum stack requirements are
provided by the HAL using the symbol CYGNUM _HAL STACK _SI ZE_ M NI MUM

A potential problem with this scheme is with nested interrupts. Since interrupts are
reenabled during the DSR portion of servicing an interrupt, thereisthe possibility of a
new interrupt (hopefully from a separate source) arriving while this processing takes
place. When this new interrupt is serviced some state information about the
interrupted processing will be saved on the stack. The amount of this information
again depends on the CPU architecture and in some casesit issubstantial. Thisimplies
that any given stack would need enough space to potentially hold "N" interrupt

eCos

eCos Reference Manual n 95

eCos Interrupt Model

frames. In arealtime system with many threads thisis an untenable situation. To solve
this problem, eCos allows for a separate interrupt stack to be used while processing
interrupts. This stack needs to be large enough to support "N" nested interrupts, but
each individual thread stack only needs the overhead of asingle interrupt state. Thisis
because the thread state is kept on the thread’s own stack, including information about
any interrupt that caused the thread to be scheduled. Thisisamuch better situation in
the end, however, since only the interrupt stack need be large enough to handle the
potential interrupt servicing needs.

eCos allows for the use of the interrupt stack to be totally configurable. The user can
elect to not use a separate interrupt stack. This requires making all thread stacks large
enough but does reduce the overhead of switching stacks while processing interrupts.
On the other hand, if memory istight, then choosing a separate interrupt stack would
be warranted at the cost of afew machine cycles during the processing of each
interrupt.

Not all target HAL s support this feature from day one anyway; however common
configuration features such as this may still be presented in the config tool, and
present inincludefiles, even if the actual target selected does not support the feature at
thistime.

The following problem with the interrupt system has been observed. On the mn10300
simulator, interrupts were occurring immediately after they were re-enabled in the
DSR. This should realy be considered a case of interrupt overrun since thereis no
possibility of useful [or any] processing between the time an interrupt has been
serviced and an subsequent interrupt occurs, hence the system istotally saturated. The
problem came about because the stack was overflowing. It was a user [thread] stack
that overflowed because DSR processing was taking place on the thread stack.
Analysis of this problem led to arework of how interrupts are processed, in particular
the use of a separate interrupt stack during interrupt processing (both ISR and DSR
parts). The overflow can still happen, but now it is restricted to only the interrupt
stack. The system designer can make accommodations for this by making a suitably
largeinterrupt stack if it isknown that the "overrun" isfinite, e.g. in the case of aseria
device, this could be the depth of some FIFO. In any case, overrun should be avoided,
but having only a single stack that needs to suffer multiple interrupt frames allows for
this failure to be detected simply.

Of coursg, it is only worthwhile having a separate interrupt stack if you are using an
eCos configuration that has a scheduler and multiple threads. If thereis no kerndl,
then the C library arrangesto call mai n(), or your application may be entered from
cyg_user_start (), onthe startup stack. It runs on the only stack thereisin the
system. Depending on the design of the particular HAL for your target platform, itis
natural to re-use the startup stack as the interrupt stack as soon as the scheduler is
running. Sincethisisonly sensibleif thereisakernel, HALstypically only implement

96 n eCos Reference Manual eCos

eCos Interrupt Model

the separate interrupt stack if the kernel is present.

eCos eCos Reference Manual n 97

eCos Interrupt Model

Part Ill: PCI Library

98 n eCos Reference Manual eCos

The eCos PCI Library

The eCos PCI Library

The PCI library is an optional part of eCos, and is only applicable to some packages.

PCI Library

The eCos PCI library provides the following functionality:

1) Scan the PCI bus for specific devices or devices of acertain class.

2) Read and change generic PCI information.

3) Read and change device-specific PCI information.

4) Allocate PCI memory and 10 space to devices.

5) Trandate adevice's PCl interrupts to equivalent HAL vectors.

Example code fragments are from the pcil test (see

io/pci/<release>/tests/pcil.c).

All of the functions described below are declared in the header file <cyg/io/pci.h>
which all clients of the PCI library should include.

Initialising the bus

The PCI bus needsto be initialized before it can be used. This only needs to be done
once - some HALs may do it as part of the platform initialization procedure, other
HALs may leave it to the application to do it. The following function will do the
initialization only once, so it's safe to call from multiple drivers:

eCos eCos Reference Manual n 99

The eCos PCI Library

void cyg_pci _init(void);

Scanning for devices

After the bus has been initialized, it is possible to scan it for devices. Thisis done
using the function:
cyg_bool cyg_pci_find_next(cyg_pci_device_id cur_devid,
cyg_pci _device_id *next_devid);
It will scan the bus for devices starting at cur_devid. If adeviceisfound, itsdevidis
stored in next_devid and the function returns true.

The pcil test’s outer loop looks like:
cyg_pci _init();
if (cyg_pci_find_next(CYG PCI _NULL_DEVID, &devid)) {
do {
<use devi d>
} while (cyg_pci_find_next(devid, &devid));
}
What happens is that the bus getsinitialized and a scan is started.
CYG_PCI_NULL_DEVID causescyg_pci_find_next() to restart its scan. If the bus
does not contain any devices, thefirst call to cyg_pci_find_next() will return false.

If the call returnstrue, aloop is entered where the found devid is used. After devid
processing has completed, the next device on the busis searched for;
cyg_pci_find_next() continues its scan from the current devid. The loop terminates
when no more devices are found on the bus.

Thisisthe generic way of scanning the bus, enumerating al the devices on the bus.
But if the application islooking for adevice of agiven device class (e.g., a SCSI
controller), or a specific vendor device, these functions simplify the task a bit:

cyg_bool cyg_pci _find_class(cyg uint32 dev_cl ass,

cyg_pci _device_id *devid);
cyg_bool cyg_pci_find_device(cyg uintl6 vendor, cyg_uintl6 device
cyg_pci _device_id *devid);

They work just like cyg_pci_find_next(), but only return true when the, dev_class or
vendor/device qualifiers match those of a device on the bus. The devid serves as both
an input and an output operand: the scan starts at the given device, and if adeviceis
found devid is updated with the value for the found device.
The <cyg/io/pci_cfg.h> header file (included by pci.h) contains definitions for PCI
class, vendor and device codes which can be used as arguments to the find functions.
Thelist of vendor and device codes is not complete: add new codes as necessary. If
possible also register the codes at the PCI Code List (http://www.yourvote.com/pci)
which is where the eCos definitions are generated from.

100 n eCos Reference Manual eCos

The eCos PCI Library

Generic config information

When avalid device ID (devid) isfound using one of the above functions, the
associated device can be queried and controlled using the functions:
voi d cyg_pci _get_device_info (cyg_pci_device_id devid
cyg_pci _device *dev_info);
voi d cyg_pci _set_device_info (cyg_pci_device_id devid,
cyg_pci _device *dev_info);
Thecyg_pci_device structure (defined in pci.h) primarily holds information as
described by the PCI specification [1]. The pcil test prints out some of this
information:
/] Get device info
cyg_pci _get _device_i nfo(devid, &dev_info);
diag_printf("\n Comrand 0x%04x, Status 0x%94x\n",
dev_i nfo. command, dev_info. status);
The command register can also be written to, controlling (among other things)
whether the device responds to |O and memory access from the bus.

Specific config information

The above functions only allow access to generic PCI config registers. A device can
have extra config registers not specified by the PCI specification. These can be
accessed with these functions:
voi d cyg_pci _read_config _uint8(cyg _pci_device_id devid,
cyg_uint8 offset, cyg uint8 *val);
voi d cyg_pci _read_config_uintl6(cyg_pci_device_id devid,
cyg uint8 offset, cyg uintl6 *val);

voi d cyg_pci _read_config_uint32(cyg_pci_device_id devid,
cyg uint8 offset, cyg uint32 *val);

voi d cyg_pci _wite_config_ uint8(cyg_pci_device_id devid,
cyg uint8 offset, cyg uint8 val);

void cyg_pci _wite_config_uintl6(cyg_pci_device_id devid,

cyg_uint8 offset, cyg uintl6 val);
voi d cyg_pci _wite_config_ uint32(cyg_pci_device_id devid,

cyg_uint8 offset, cyg uint32 val);
The write functions should only be used for device-specific config registers since
using them on generic registers may invaidate the contents of a previously fetched

cyg_pci_device structure.

Allocating memory

A PCI device ignores all 10 and memory access from the PCI bus until it has been
activated. Activation cannot happen until after device configuration. Configuration
means telling the device where it should map its IO and memory resources. Thisis

eCos eCos Reference Manual n 101

The eCos PCI Library

done with this function:

cyg_bool cyg_pci _configure_devi ce(cyg_pci_device *dev_info);
Thisfunction handles all 10 and memory regions that need configuration on the
device. Each region is represented in the PCI device's config space by one of six
BARs (Base Address Registers) and is handled individually according to type using
these functions:

cyg_bool cyg_pci_allocate_nenory(cyg_pci_device *dev_info,

cyg_uint 32 bar,
CYG_PCl _ADDRESS64 *base);
cyg_bool cyg_pci_allocate_io(cyg_pci_device *dev_info
cyg_uint 32 bar,
CYG_PCl _ADDRESS32 *base);

The memory bases (in two distinct address spaces) are increased as memory regions
are allocated to devices. Allocation will fail (the function returns false) if the base
exceeds the limits of the address space (10 is IMB, memory is 2732 or 264 bytes).
These functions can also be called directly be the application/driver if necessary, but
this should not be necessary.
The bases are initialized with default values provided by the HAL. It ispossible for an
application to override these using the following functions:

voi d cyg_pci _set_menory_base(CYG_PCl _ADDRESS64 base)

voi d cyg_pci _set_i o_base(CYG PCl _ADDRESS32 base);
When a device has been configured, the cyg_pci_device structure will contain the
physical addressin the CPU'’s address space where the device's memory regions can
be accessed.
Thisinformation is provided in base_map[] - thereis a 32 bit word for each of the
device's BARs. For 32 bit PClI memory regions, each 32 bit word will be an actual
pointer that can be used immediately by the driver: the memory space will normally
be linearly addressable by the CPU.

However, for 64 bit PCI memory regions, some (or all) of the region may be outside
of the CPUs address space. In this case the driver will need to know how to access the
region in segments. This functionality may be adopted by the eCos HAL if deemed
useful in the future. The 2GB available on many systems should suffice though.

Interrupts

A device may generate interrupts. The HAL vector associated with a given device on
the busis platform specific. This function allows adriver to find the actual interrupt
vector for a given device:

cyg_bool cyg_pci_translate_interrupt(cyg_pci_device *dev_info,
CYG_ADDRWORD *vec);

If the function returns false, no interrupts will be generated by the device. If it returns

102 n eCos Reference Manual eCos

The eCos PCI Library

true, the CYG_ADDRWORD pointed to by vec is updated with the HAL interrupt
vector the device will be using. Thisis how the function is used in the pcil test:
if (cyg_pci_translate_interrupt(&ev_info, & rq))
diag_printf(" Wred to HAL vector %\n", irq);
el se
diag_printf(" Does not generate interrupts.\n");
The application/drive should attach an interrupt handler to a device's interrupt before
activating the device.

Activating a device

When the device has been allocated memory spaceit can be activated. Thisis not done
by the library since adriver may have to initialize more state on the device before it
can be safely activated.

Activating the device is done by enabling flags in its command word. As an example,
see the pcil test which can be configured to enable the devices it finds. This allows
these to be accessed from GDB (if abreakpoint is set on cyg_test_exit):

#i f def ENABLE_PCl _DEVI CES

{
cyg_uintl6 cnd;

/1 Don’t use cyg _pci_set_device_info since it clears
/1 some of the fields we want to print out bel ow.
cyg_pci _read_config_ui nt 16(dev_i nf o. devi d,
CYG PCl _CFG_COWMAND, &cn) ;
cmd | =
CYG_PCl _CFG_COWAND_I g CYG_PCl _CFG_COMVAND_MEMORY;
cyg_pci_wite_config_uintl6(dev_info.devid,
CYG PCl _CFG_COWMMAND, cnd);
}
diag_printf(" **** Device | O and MEM access
enabl ed\ n");
#endi f
Note: that the best way to activate adevice is actually through
cyg_pci_set_device info(), but in this particular case the cyg_pci_device structure

contents from before the activation is required for printout further down in the code.

Links

See these links for more information about PCI.

1) See http://www.pcisig.com (information on the PCI specifications)

2) See http://www.yourvote.com/pci (list of vendor and device IDs)

3) See http://www.picmg.org (PCI Industrial Computer Manufacturers Group)

eCos eCos Reference Manual n 103

The eCos PCI Library

PCI Library reference

This document defines the PCI Support Library for eCos.

The PCI support library provides a set of routines for accessing the PCI bus
configuration space in a portable manner. Thisis provided by two APIs. The high
level API isused by device drivers, or other code, to access the PCI configuration
space portably. Thelow level API isused by the PCI library itself to access the
hardware in a platform-specific manner, and may also be used by device driversto
access the PCI configuration space directly.

Underlying the low-level APl isHAL support for the basic Configuration space
operations. These should not generally be used by any code other than the PCI library,
and are present inthe HAL to allow low level initiaization of the PCI bus and devices
to take place if necessary.

PCI Library API

The PCI library provides the following routines and types for accessing the PCI
configuration space.

The API for the PCI library isfound in the header file <cyg/io/pci.h>.

Definitions

The header file contains definitions for the common configuration structure offsets
and specimin values for device, vendor and class code.

Types and data structures

The following types are defined:

typedef CYG WORD32 cyg_pci _device_i d;
Thisis comprised of the bus number, device number and functional unit number
packed into asingle word. The macro CYG_PClI_DEV_MAKE_ID() may be used to
construct adevice id from the bus, device and functional unit numbers of a device.
Similarly the macros CYG_PCI_DEV_GET_BUS() and
CYG_PCI_DEV_GET_DEVFN() may be used to extract them. It should not be
necessary to use these macros under normal circumstances.

typedef struct cyg_pci_device;
This structure is used to contain data read from a PCl device's configuration header by
cyg_pci_get_device info(). It isalso used to record the resource allocations made to
the device.

typedef CYG WORD64 CYG_PCl _ADDRESS64;
typedef CYG WORD32 CYG_PCl _ADDRESS32;

104 n eCos Reference Manual eCos

The eCos PCI Library

Pointersin the PCl address space are 32 bit (10 space) or 32/64 bit (memory space). In
most platform and device configurations al of PCI memory will be linearly
addressable using only 32 bit pointers as read from base_map([].

The 64 bit type is used to allow handling 64 bit devices in the future, should it be
necessary, without changing the library’s API.

Functions

void cyg_pci _init(void);
Initialize the PCI library and establish contact with the hardware. Thisfunctionis
idempotent and can be called either by all driversin the system, or just from an
application initialization function.
cyg_bool cyg_pci_find_device(cyg_uintl6 vendor
cyg_uint 16 devi ce,
cyg_pci _device_id *devid);
Searches the PCI bus configuration space for a device with the given vendor and
deviceids. The search starts at the device pointed to by devid, or at the first dot if it
contains CYG_PCI_NULL_DEVID. *devid will be updated with the ID of the next
device found. Returnstrue if oneisfound and falseif not.
cyg_bool cyg_pci_find_class(cyg_uint32 dev_cl ass,
cyg_pci _device_id *devid);
Searches the PCI bus configuration space for a device with the given class code. The
search starts at the device pointed to by devid, or at the first dot if it contains
CYG_PCI_NULL_DEVID.

*devid will be updated with the ID of the next device found. Returnstrue if oneis
found and false if not.
cyg_bool cyg_pci _find_next(cyg_pci _device_id cur_devid,
cyg_pci _device_id *next_devid);
Searches the PCI configuration space for the next valid device after cur_devid. If
cur_devidisgiventhevaue CYG_PCI_NULL_DEVID, then the search starts at the
first slot. It is permitted for next_devid to point to cur_devid. Returnstrueif another
deviceisfound and falseif not.
voi d cyg_pci _get _device_info (cyg_pci_device_id devid,
cyg_pci _device *dev_info);
Thisfunction getsthe PCI configuration information for the device indicated in devid.
The common fields of the cyg_pci_device structure, and the appropriate fields of the
relevant header union member are filled in from the device's configuration space. If
the device has not been enabled, then this function will also fetch the size and type
information from the base address registers and place it in the base size][] array.
voi d cyg_pci _set_device_info (cyg_pci_device_id devid
cyg_pci _device *dev_info);

eCos eCos Reference Manual n 105

The eCos PCI Library

Thisfunction setsthe PCI configuration information for the device indicated in devid.
Only the configuration space registers that are writable are actually written. Once all
the fields have been written, the device info will be read back into *dev_info, so that it
reflects the true state of the hardware.

voi d cyg_pci _read_config uint8(cyg pci_device_id devid, cyg_uint8 offset,

cyg uint8 *val);

voi d cyg_pci _read_config _uintl6(cyg_pci_device_id devid, cyg uint8 offset,

cyg_uintl6 *val);

voi d cyg_pci _read_config_uint32(cyg_pci_device_id devid, cyg_uint8 offset,

cyg_uint32 *val);
These functions read registers of the appropriate size from the configuration space of
the given device. They should mainly be used to access registers that are device
specific. General PCI registers are best accessed through cyg_pci_get_device info().

void cyg_pci _wite_config uint8(cyg_pci_device_id devid, cyg_ uint8 offset,

cyg uint8 val);

voi d cyg_pci _wite_config uintl6(cyg_pci_device_id devid, cyg uint8 offset,

cyg uintl6 val);

voi d cyg_pci _wite_config uint32(cyg_pci_device_id devid, cyg uint8 offset,

cyg_uint32 val);
These functions write registers of the appropriate size to the configuration space of the
given device. They should mainly be used to access registers that are device specific.
General PCI registers are best accessed through cyg_pci_get_device info(). Writing
the general registers this way may render the contents of acyg_pci_device structure
invalid.

Resource allocation

These routines allocate memory and 10 space to PCI devices.

cyg_bool cyg_pci _configure_device(cyg_pci_device *dev_info)
Allocate memory and 10 space to all base address registers using the current memory
and |0 base addresses in the library. The allocated base addresses, transdated into
directly usable values, will be put into the matching base_map[] entriesin *dev_info.
If *dev_info does not contain valid base_siz€]] entries, then the result isfalse. This
function will also call cyg_pci_trandate interrupt() to put the interrupt vector into the
hal_vector entry.

cyg_bool cyg_pci_translate_interrupt(cyg_pci_device *dev_info, CYG ADDRWORD
*vec);
Trangdlate the device's PCI interrupt (INTA#-INTD#) to the associated HAL vector.
This may also depend on which ot the device occupies. If the device may generate
interrupts, the translated vector number will be stored in vec and the result istrue.
Otherwise the result isfalse.

cyg_bool cyg_pci_allocate_nenory(cyg_pci_device *dev_info

106 n eCos Reference Manual eCos

The eCos PCI Library

cyg_uint 32 bar
CYG_PCl _ADDRESS64 *base);
cyg_bool cyg_pci_allocate_io(cyg_pci_device *dev_info,
cyg_uint 32 bar,
CYG_PCl _ADDRESS32 *base);
These routines allocate memory or 1O space to the base address register indicated by
bar. The base address in *base will be correctly aligned and the address of the next
free location will be written back into it if the allocation succeeds. If the base address
register is of the wrong type for this allocation, or dev_info does not contain valid
base size[] entries, the result isfalse. These functions allow a device driver to set up
its own mappingsiif it wants. Most devices should probably use
cyg_pci_configure_device().
voi d cyg_pci _set_nenory_base(CYG_PCl _ADDRESS64 base)
voi d cyg_pci _set _i o_base(CYG_PCl _ADDRESS32 base);
These routines set the base addresses for memory and 1O mappings to be used by the
memory alocation routines. Normally these base addresses will be set to default
values based on the platform. These routines allow these to be changed by application
code if necessary.

PCI Library Hardware API

This APl is used by the PCI library to access the PCI bus configuration space.
Although it should not normally be necessary, this APl may also be used by device
driver or application code to perform PCI bus operations not supported by the PCI
library.
voi d cyg_pci hw_init(void);
Initialize the PCI hardware so that the configuration space may be accessed.
voi d cyg_pci hw_read_config_ui nt8(cyg_uint8 bus, cyg_uint8 devfn, cyg uint8
of fset, cyg_uint8 *val);
voi d cyg_pci hw_read_config_ui nt 16(cyg_uint8 bus, cyg_uint8 devfn, cyg uint8
of fset, cyg uintl6 *val);
voi d cyg_pci hw_read_config_ui nt32(cyg_uint8 bus, cyg_uint8 devfn, cyg uint8
of fset, cyg uint32 *val);
These functions read aregister of the appropriate size from the PCI configuration
space at an address composed from the bus, devfn and offset arguments.
voi d cyg_pci hw wite_config_ uint8(cyg_uint8 bus, cyg uint8 devfn, cyg uint8
of fset, cyg_uint8 val)
voi d cyg_pci hw wite_config_uintl6(cyg uint8 bus, cyg uint8 devfn, cyg_uint8
of fset, cyg_uintl6 val);
voi d cyg_pci hw wite_config_uint32(cyg uint8 bus, cyg uint8 devfn, cyg_uint8
of fset, cyg_uint32 val);
These functions write aregister of the appropriate size to the PCI configuration space
a an address composed from the bus, devfn and offset arguments.

eCos eCos Reference Manual n 107

The eCos PCI Library

cyg_bool cyg_pcihw translate_interrupt(cyg_uint8 bus, cyg uint8 devfn,
CYG_ADDRWORD *vec) ;
This function interrogates the device and determines which HAL interrupt vector it is
connected to.

HAL PCI support

HAL support consists of aset of C macros that provide the implementation of the low
level PCI API.

HAL_PCl _I NI T()
Initialize the PCI bus.

HAL_PCI _READ Ul NT8(bus, devfn, offset, val)

HAL_PCl _READ Ul NT16(bus, devfn, offset, val)
HAL_PCl _READ Ul NT32(bus, devfn, offset, val)

Read avalue from the PCI configuration space of the appropriate size at an address
composed from the bus, devfn and offset.

HAL_PCI _WRI TE_UI NT8(bus, devfn, offset, val)

HAL_PCI _WRI TE_UI NT16(bus, devfn, offset, val)

HAL_PCI _WRI TE_UI NT32(bus, devfn, offset, val)
Write avalue to the PCI configuration space of the appropriate size at an address
composed from the bus, devfn and offset.

HAL_PCI _TRANSLATE_| NTERRUPT(bus, devfn, *vec, valid)
Trandate the device'sinterrupt line into aHAL interrupt vector.

HAL_PCI _ALLOC_BASE_MEMORY

HAL_PCI _ALLOC BASE | O
These macros define the default base addresses used to initialize the memory and 1O
alocation pointers.

HAL_PCl _PHYSI CAL_MEMORY_BASE

HAL_PClI _PHYSI CAL_| O BASE
PCI memory and IO range do not always correspond directly to physical memory or
IO addresses. Frequently the PCI address spaces are windowed into the processor’s
address range at some offset. These macros define offsets to be added to the PCI base
addresses to translate PCI bus addresses into physical memory addresses that can be
used to access the allocated memory or 10 space.

NOTE The chunk of PCI memory space directly addressable though the window by
the CPU may be smaller than the amount of PCI memory actually provided.
In that case driverswill have to access PClI memory space in segments. Doing
thiswill be platform specific and is currently beyond the scope of the HAL.

108 n eCos Reference Manual eCos

Part IV: I/O Package (Device
Drivers)

eCos eCos Reference Manual n 109

Introduction

10

Introduction

The 1/O package is designed as a general purpose framework for supporting device
drivers. Thisincludes all classes of drivers from simple seria to networking stacks
and beyond.

Components of the I/O package, such asdevice drivers, are configured into the system
just like all other components. Additionally, end users may add their own drivers to
this set.

Whilethe set of drivers (and the devicesthey represent) may be considered static, they
must be accessed via an opague “handl€”’. Each device in the system has a unique
name and thecyg_i o_I ookup() function isused to map that name onto the handle for
the device. This“hiding” of the device implementation allows for generic, named
devices, aswell as more flexibility. Also, thecyg_i o_I ookup() function provides
drivers the opportunity to initialize the device when usage actually starts.

All devices have aname. The standard provided devices use names such as
“/dev/console’ and “/dev/serial0”, where the “/dev/” prefix indicates that thisisthe
name of adevice.

The entire 1/0 package API, aswell as the standard set of provided drivers, iswritten
inC.

Basic functions are provided to send data to and receive data from a device. The
details of how thisis done is|eft to the device [class] itself. For example, writing data
to ablock device like adisk drive may have different semantics than writing to a serial
port.

110 n eCos Reference Manual eCos

Introduction

Additional functions are provided to manipulate the state of the driver and/or the
actual device. These functions are, by design, quite specific to the actual driver.

Thisdriver model supports layering; in other words, a device may actually be created
“on top of” another device. For example, the “tty” (terminal-like) devices are built on
top of simple serial devices. The upper layer then has the flexibility to add features
and functions not found at the lower layers. In this case the “tty” device provides for
line buffering and editing not available from the simple seria drivers.

Some drivers will support visibility of the layers they depend upon. The “tty” driver
alows information about the actual serial device to be manipulated by passing get/set
config callsthat use a serial driver “key” down to the seria driver itself.

eCos eCos Reference Manual n 111

User API

11

User API

All functions, except cyg_i o_I ookup() requirean 1/O “handle’.

All functions return avalue of the type cyg_Err No. If an error condition is detected,
this value will be negative and the absolute value indicates the actual error, as
specified incyg/ error/ codes. h. The only other legal return value will be ENCERR.
All other function arguments are pointers (references). This allows the driversto pass
information efficiently, both into and out of the driver. The most striking example of
thisisthe “length” value passed to the read and write functions. This parameter
contains the desired length of data on input to the function and the actual transferred
length on return.

/1l Lookup a device and return its handl e

Cyg_ErrNo cyg_i o_I ookup(
const char *name,
cyg_io_handl e_t *handle)

This function maps a device name onto an appropriate handle. If the named deviceis
not in the system, then the error - ENCENT is returned. If the device is found, then the
handle for the device is returned by way of the handle pointer * handl e.

/1 Wite data to a device

Cyg_ErrNo cyg_io_ wite(
cyg_i o_handl e_t handle,
const void *buf,
cyg_uint32 *len)

112 n eCos Reference Manual eCos

User API

Thisfunction sends datato adevice. The size of datato send iscontainedin* | en and
the actual size sent will be returned in the same place.
/! Read data from a device
Cyg_ErrNo cyg_i o_read(
cyg_io_handl e_t handle,
voi d *buf,
cyg_uint32 *len)
This function receives data from a device. The desired size of datato receiveis
contained in * | en and the actua size obtained will be returned in the same place.
/1l Get the configuration of a device
Cyg_ErrNo cyg_i o_get_config(
cyg_i o_handl e_t handle,
cyg_uint 32 key,
voi d *buf,
cyg_uint 32 *len)
Thisfunction is used to obtain run-time configuration about a device. The type of
information retrieved is specified by the key. The data will be returned in the given
buffer. The value of * | en should contain the amount of data requested, which must
be at least as large as the size appropriate to the selected key. The actual size of data
retrieved isplaced in * | en. The appropriate key values differ for each driver and are
al listed inthefilecyg/i o/ confi g_keys. h.
/1 Change the configuration of a device
Cyg_ErrNo cyg_io_set_config(
cyg_i o_handl e_t handle,
cyg_ui nt 32 key,
const voi d *buf,
cyg_uint32 *len)

Thisfunction is used to manipulate or change the run-time configuration of adevice.
The type of information is specified by the key. The datawill be obtained from the
given buffer. The value of * | en should contain the amount of data provided, which
must match the size appropriate to the selected key. The appropriate key values differ
for each driver and are dll listed inthefilecyg/i o/ confi g_keys. h.

eCos eCos Reference Manual n 113

Serial driver details

12

Serial driver detalls

Two different classes of serial drivers are provided as a standard part of the eCos
system. These are described as “simple serial” (serial) and “tty-like” (tty).

“simple serial” driver

Usetheincludefilecyg/i o/ seri ali o. h for thisdriver.

The simple serial driver is capable of sending and receiving blocks of raw datato a
serial device. Controls are provided to configure the actual hardware, but thereis no
manipulation of the data by this driver.

There may be many instances of thisdriver in agiven system, one for each serial
channel. Each channel corresponds to a physical device and there will typically be a
device module created for this purpose. The device modules themselves are
configurable, allowing specification of the actual hardware details, as well as such
details as whether the channel should be buffered by the serial driver, etc.

Runtime configuration

typedef struct {
cyg_serial _baud_rate_t baud;
cyg_serial _stop_bits_t stop;
cyg_serial _parity_t parity;
cyg_serial _word_l ength_t word_l ength;

114 n eCos Reference Manual eCos

Serial driver details

cyg_uint32 flags;

} cyg_serial _info_t;

CYGNUM SERI AL_BAUD 50
CYGNUM _SERI AL_BAUD 75
CYGNUM _SERI AL_BAUD 110
CYGNUM _SERI AL_BAUD 134 5
CYGNUM _SERI AL_BAUD 150
CYGNUM _SERI AL_BAUD 200
CYGNUM _SERI AL_BAUD 300
CYGNUM _SERI AL_BAUD 600
CYGNUM_SERI AL_BAUD 1200
CYGNUM_SERI AL_BAUD_ 1800
CYGNUM_SERI AL_BAUD 2400
CYGNUM_SERI AL_BAUD 3600
CYGNUM_SERI AL_BAUD 4800
CYGNUM_SERI AL_BAUD 7200
CYGNUM_SERI AL_BAUD 9600
CYGNUM_SERI AL_BAUD_ 14400
CYGNUM_SERI AL_BAUD_ 19200
CYGNUM _SERI AL_BAUD 38400
CYGNUM _SERI AL_BAUD 57600

CYGNUM_SERI AL_BAUD 115200
CYGNUM_SERI AL_BAUD_ 234000

CYGNUM SERI AL_STOP_1
CYGNUM SERI AL_STOP_1 5
CYGNUM SERI AL_STOP_2

(character) length is 5.

Thefield "word_length" contains the number of data bits per word (character). This
must be one of the values:

CYGNUM _SERI AL_WORD LENGTH_5
CYGNUM _SERI AL_WORD LENGTH_6
CYGNUM _SERI AL_WORD LENGTH_7
CYGNUM _SERI AL_WORD LENGTH_8

Thefield "baud" contains a baud rate selection. This must be one of the values:

Thefield "stop" contains the number of stop bits. This must be one of the values:

NOTE On most hardware, a selection of 1.5 stop bitsis only valid if the word

Thefield "parity" containsthe parity mode. This must be one of the values:

CYGNUM SERI AL_PARI TY_NONE
CYGNUM SERI AL_PARI TY_EVEN
CYGNUM _SERI AL_PARI TY_ODD

CYGNUM SERI AL_PARI TY_MARK

eCos

eCos Reference Manual n 115

Serial driver details

CYGNUM SERI AL_PARI TY_SPACE

Thefield "flags' isabitmask which controlsthe behavior of the serial devicedriver. It
should be built from the values CYG_SERI AL_FLAGS xxx defined below:

#def i ne CYG_SERI AL_FLAGS_RTSCTS 0x0001

If this bit is set then the port is placed in “ hardware handshake” mode. In this mode,
the CTS and RTS pins control when datais alowed to be sent/received at the port.
Thisbit isignored if the hardware does not support thislevel of handshake.
typedef struct {

cyg_int32 rx_bufsi ze;

cyg_int32 rx_count;

cyg_int32 tx_bufsize;

cyg_int32 tx_count;

}

cyg_serial _buf _info_t;
Thefield 'rx_bufsize' contains the total size of the incoming data buffer. Thisisset to
0 on devicesthat do not support buffering (i.e. polled devices).

Thefield 'rx_count' contains the number of bytes currently occupied in the incoming
databuffer. Thisis set to 0 on devices that do not support buffering (i.e. polled
devices).

Thefield 'tx_bufsize' contains the total size of the transmit data buffer. Thisisset to 0
on devices that do not support buffering (i.e. polled devices).

Thefield 'tx_count' contains the number of bytes currently occrupied in the transmit
data buffer. Thisis set to 0 on devices that do not support buffering (i.e. polled
devices).

API detalils

cyg_io_wite(handl e, buf, len)

Send the data from "buf" to the device. The driver maintains a buffer to hold the data.
The size of the intermediate buffer is configurable within the interface module. The
datais not modified at al whileit is being buffered. On return, *len contains the
amount of characters actually consumed .

It is possible to configure the write call to be blocking (default) or non-blocking.
Non-blocking mode requires both the configuration option

CYGOPT |0 _SERIAL_SUPPORT_NONBLOCKING to be enabled, and the
specific device to be set to non-blocking mode for writes (see cyg_io_set config). In
blocking mode, the call will not return until there is space in the buffer and the entire
contents of "buf" have been consumed.

116 n eCos Reference Manual eCos

Serial driver details

In non-blocking mode, as much as possible gets consumed from "buf". If everything
was consumed, the call returns ENOERR. If only part of the "buf" contents was
consumed, -EAGAIN isreturned and the caller must try again. On return, *len
contains the amount of characters actually consumed .

The call can also return -EINTR if interrupted viathe cyg io get config/ABORT
key. On return, *len contains the amount of characters actually consumed .

cyg_i o_r ead(handle, buf, len)

Receive data into the specified buffer from the device. No manipulation of the datais
performed before being transferred. An interrupt driven interface module will support
dataarriving when no read is pending by buffering the datain the serial driver. Again,
this buffering is completely configurable. On return, *len contains the amount of
characters actually received.

It is possible to configure the read call to be blocking (default) or non-blocking.
Non-blocking mode requires both the configuration option
CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING to be enabled, and the
specific device to be set to non-blocking mode for reads (see cyg_io_set_config).

In blocking mode, the call will not return until the requested amount of data has been
read.

In non-blocking mode, data waiting in the device buffer is copied to "buf", and the call
returns immediately. If there was enough datain the buffer to fulfill the request,
ENOERR isreturned. If only part of the request could be fulfilled, -EAGAIN is
returned and the caller must try again. On return, *len contains the amount of
characters actually received.

The call can also return -EINTR if interrupted viathe cyg io get config/ABORT
key. On return, *len contains the amount of characters actually received.

cyg_i o_get _config(handl e, key, buf, len)

This function returns current [runtime] information about the device and/or driver.

Key:
CYG_IO_GET_CONFIG_SERIAL_INFO
Buf type:
cyg_seria_info_t
Function:

This function retrieves the current state of the driver and hardware. This
information containsfields for hardware baud rate, number of stop bits, and parity
mode. It also includes a set of flags that control the port, such as hardware flow
control.

eCos

eCos Reference Manual n 117

Serial driver details

Key:

CYG_IO_GET_CONFIG_SERIAL_BUFFER_INFO
Buf type:

cyg_seria _buf info t
Function:

This function retrieves the current state of the software buffersin the serial
drivers. For both receive and transmit buffersit returns the total buffer size and
the current number of bytes occupied in the buffer. It does not take into account
any buffering such as FIFOs or holding registers that the serial deviceitself may
have.

Key:
CYG_IO_GET_CONFIG_SERIAL_OUTPUT_DRAIN

Buf type:
void *

Function:

This function waits for any buffered output to complete. This function only
compl etes when there is no more data remaining to be sent to the device.

Key:

CYG_IO_GET_CONFIG_SERIAL_OUTPUT_FLUSH
Buf type:

void *
Function:

This function discards any buffered output for the device.
Key:

CYG_IO_GET_CONFIG_SERIAL_INPUT_DRAIN
Buf type:

void *
Function:

This function discards any buffered input for the device.
Key:

CYG_IO_GET_CONFIG_SERIAL_ABORT
Buf type:

void*
Function:

118 n eCos Reference Manual eCos

Serial driver details

This function will cause any pending read or write calls on this device to return
with -EABORT.

Key:
CYG_IO_GET_CONFIG_SERIAL_READ_BLOCKING
Buf type:
cyg_uint32 (valuesQ or 1)
Function:

This function will read back the blocking-mode setting for read calls on this
device. Thiscall isonly availableif the configuration option
CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING isenabled.

Key:
CYG_IO_GET_CONFIG_SERIAL_WRITE_BLOCKING
Buf type:
cyg_uint32 (valuesQ or 1)
Function:

This function will read back the blocking-mode setting for write calls on this
device. Thiscall isonly availableif the configuration option
CYGOPT |0 _SERIAL_SUPPORT_NONBLOCKING is enabled.

cyg_i o_set_config(handl e, key, buf, Ien)

Thisfunction is used to update or change runtime configuration of a port.
Key:
CYG_IO_SET _CONFIG_SERIAL_INFO
Buf type:
cyg_serial_info t
Function:

This function updates the information for the driver and hardware. The
information containsfields for hardware baud rate, number of stop bits, and parity
mode. It also includes a set of flags that control the port, such as hardware flow
control.

Key:
CYG_IO_SET_CONFIG_SERIAL_READ_BLOCKING
Buf type:
cyg_uint32 (valuesQ or 1)
Function:

eCos

eCos Reference Manual n 119

Serial driver details

This function will set the blocking-mode for read calls on this device. Thiscall is
only available if the configuration option
CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING isenabled.

Key:
CYG_IO_SET_CONFIG_SERIAL_WRITE_BLOCKING
Buf type:
cyg_uint32 (valuesQ or 1)
Function:

Thisfunction will set the blocking-mode for write calls on thisdevice. Thiscall is
only available if the configuration option
CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING is enabled.

“tty” driver

Usetheincludefilecyg/i o/ ttyi o. h for thisdriver.

Thisdriver is built on top of the simple seria driver and istypically used for a device
that interfaces with humans such as aterminal. It provides some minimal formatting
of data on output and allows for line-oriented editing on input.

Runtime configuration

typedef struct {
cyg uint32 tty out_flags;
cyg uint32 tty_in_flags;
} cyg_ tty info_t;

Thefield "tty_out_flags" is used to control what happensto data asit is send to the
serial port. It contains a bitmap comprised of the bits as defined by the
CYG_TTY_OUT_FLAGS xxx values below.

#define CYG_TTY_QUT_FLAGS CRLF 0x0001 // Map '\n’ => '"\n\r’ on output

If thishitissetin'tty out flags, any occurrence of the character \n’ will be replaced
by the sequence \n\r’ before sending to the device.

Thefield "tty_in_flags' is used to control how datais handled as it comes from the
serial port. It contains a bitmap comprised of the bits as defined by the
CYG TTY_I N_FLAGS xxx values below.

#define CYG TTY_I N FLAGS CR 0x0001 // Map '\r’ =>'\n' on input

If thisbitissetin"tty _in_flags', the character "\r" (“return” or “enter” on most

120 n eCos Reference Manual eCos

Serial driver details

keyboards) will be mapped to "\n".
#define CYG TTY_I N_FLAGS_CRLF 0x0002 // Map ’\n\r’ =>’\n’ on input

If thisbitissetin"tty _in_flags', the character sequence "\n\r" (often sent by
DOS/Windows based terminals) will be mapped to "\n".

#define CYG TTY_I N_FLAGS BI NARY 0x0004 // No input processing

If thisbitissetin"tty _in_flags', the input will not be manipulated in any way before
being placed in the user’ s buffer.

#define CYG_ TTY_I N FLAGS ECHO 0x0008 // Echo characters as processed

If thisbitissetin"tty in_flags', characters will be echoed back to the serial port as
they are processed.

API detalils

cyg_i o_read(handl e, buf, |en)

Thisfunction is used to read datafrom the device. In the default case, dataisread until
an end-of-line character ("\n" or "\r") is read. Additionally, the characters are echoed
back to the [terminal] device. Minimal editing of the input is also supported.

NOTE When connecting to aremote target via GDB it is hot possible to provide
console input while GDB is connected. The GDB remote protocol does not
support input. Users must disconnect from GDB if this functionality is
required.

cyg_io_wite(handl e, buf, len)

This function is used to send data to the device. In the default case, the end-of-line
character "\n" is replaced by the sequence "\n\r".

cyg_i o_get _config(handl e, key, buf, Ien)

Thisfunction is used to get information about the channel’ s configuration at runtime.
Key:
CYG_I0_GET_CONFIG_TTY_INFO
Buf type:
cyg_tty info t
Function:
This function retrieves the current state of the driver.
Thekey mustbe“CYG_IO_GET_CONFIG_TTY_INFO” which returns the control

eCos

eCos Reference Manual n 121

Serial driver details

flagsfor the channel. The buffer "buf" must be of type"cyg_tty info t" and thelength
should match.

Serial driver keys (see above) may also be specified in which case the call is passed
directly to the seria driver.

cyg_i o_set_config(handl e, key, buf, Ien)

Thisfunction is used to modify the channel’ s configuration at runtime.

Key:
CYG_IO_SET_CONFIG_TTY_INFO
Buf type:
cyg_tty info t
Function:

This function changes the current state of the driver.
The key must be CYG_| O SET_CONFI G_TTY_I NFOwhich returns the control flags for
the channel. The buffer "buf" must be of typecyg_tty_i nfo_t and the length should
match.
Serial driver keys (see above) may also be specified in which case the call is passed
directly to the seria driver.

122 n eCos Reference Manual eCos

How to write a driver

13

How to write a driver

A device driver is nothing more than a named entity that supports the basic 1/0
functions - read, write, get config, and set config. Typically adevice driver also uses
and manages interrupts from the device as well. While the interface is generic and
device driver independent, the actua driver implementation is completely up to the
device driver designer.

That said, the reason for using a device driver isto provide access to a device from
application code in as general purpose afashion as reasonable. Most driver writers are
aso concerned with making this access as simple as possible while being as efficient
as possible.

Most device drivers are concerned with the movement of information, for example
databytes along a serial interface, or packetsin a network. In order to make the most
efficient use of system resources, interrupts are used. This can allow for other
application processing to take place while the data transfers are underway, with
interrupts used to indicate when various events have occurred. For example, a seria
port typically generates an interrupt after a character has been sent “ down the wire”
and the interface is ready for another. It makes sense to alow further application
processing while the data is being sent since this can take quite along time. The
interrupt can be used to alow the driver to send a character as soon as the current one
is complete, without any active participation by the application code.

The main building blocks for device drivers are found in the include file:
cyg/io/devtab. h

eCos

eCos Reference Manual n 123

How to write a driver

All device driversin eCos are described by a device table entry, using the
“cyg_devtab_entry t” type. The entry should be created using the DEVTAB_ENTRY
macro, like this:
DEVTAB_ENTRY(|, nare, dep_nan®, handl ers, i ni t, | ookup, priv)

Arguments:

| - The"C" label for this device table entry.

name - The"C" string name for the device.

dep_name - For alayered device, the "C" string name of the device thisdeviceisbuilt
upon.

handlers - A pointer to the I/O function "handlers" (see below).

init - A function caled when eCos s initialized. This function can query the device,
setup hardware, etc.

lookup - A function called when "cyg_io_lookup()" is called for this device.

priv - A placeholder for any device specific data required by the driver.

The interface to the driver is through the “handlers’ field. Thisis a pointer to a set of
functions which implement the various cyg_i o_xXX() routines. Thistableis defined
by the macro:
DEVI O TABLE(l,wite, read, get_config, set_config)

Arguments:

| - The"C" label for thistable of handlers.

write - The function called as aresult of "cyg io_write()".

read - The function called asaresult of "cyg_io_read()".

get_config - The function called as aresult of "cyg_io_get_config()".

set_config - The function called asaresult of "cyg_io_set config()".

When eCosisinitialized (sometimes called “boot” time), the “init” functionis called
for all devicesin the system. The “init” function is alowed to return an error in which
case the device will be placed “off ling” and all I/O requests to that device will be
considered in error.

The “lookup” function is called whenever the cyg_i o_I ookup() functionis called
with this device name. The lookup function may cause the device to come “on linge”
which would then alow 1/0O operations to proceed. Future versions of the 1/0 system
will allow for other states, including power saving modes, €tc.

124 n eCos Reference Manual eCos

How to write a driver

How to write a serial hardware interface
module

The standard serial driver supplied with eCosis structured as a hardware independent
portion and a hardware dependent interface module. To add support for a new serial
port, the user should be able to use the existing hardware independent portion and just
add their own interface module which handles the details of the actual device. The
user should have no need to change the hardware independent portion.

The interfaces used by the serial driver and seria implementation modules are
contained inthefilecyg/io/serial .h

NOTE In the text below we use the notation <<xx>> to mean a modul e specific
value, referred to as “xx” below.

The interface module contains the devtab entry (or entriesif a single module supports
more than one interface). This entry should have the form:

DEVTAB_ENTRY(<<nodul e_name>>,

<<devi ce_nane>>,

0,

&serial _devi o,

<<nodul e_i ni t >>,

<<nodul e_| ookup>>,

&<<seri al _channel >>

)

Where:

module_name - The "C" label for this devtab entry

device name - The"C" string for the device. E.g. "/dev/serial0".

serial_devio - Thetable of I/0 functions. This set is defined in the hardware
independent serial driver and should be used.

module_init - The module initialization function.

module_lookup - The device lookup function. This function typically sets up the
device for actual use, turning on interrupts, configuring the port, etc.
serial_channel - Thistable (defined below) contains the interface between the
interface module and the seria driver proper.

Each serial device must have a*“serial channel”. Thisis aset of datawhich describes
al operations on the device. It also contains buffers, etc., if the device isto be
buffered. The serial channd is created by the macro:

SERI AL_CHANNEL _USI NG _| NTERRUPTS(I, f uns, dev_pri v, baud, st op, parity, word
_length,
fl ags, out _buf, out _bufl en,in_buf,in_buflen)

eCos

eCos Reference Manual n 125

How to write a driver

Arguments:

| - The"C" label for this structure.

funs - The set of interface functions (see below).

dev_priv - A placeholder for any device specific datafor this channel.
baud - Theinitial baud rate value (cyg_seria_baud t).

stop - Theinitial stop bits value (cyg_serial_stop_hits t)

parity - Theinitial parity mode value (cyg_serial_parity t)
word_length - Theinitial word length value (cyg_serial_word_length t)
flags - Theinitial driver flags value

out_buf - Pointer to the output buffer. NULL if none required.
out_buflen - The length of the output buffer.

in_buf - Pointer to the input buffer. NULL if none required.

in_buflen - The length of the input buffer.

If either buffer length is zero, no buffering will take place in that direction and only
polled mode functions will be used.
The interface from the hardware independent driver into the hardware interface
moduleis contained in the "funs' table above. Thisis defined by the macro:

SERI AL_FUNS(|, putc, getc, set_config,start_xmt,stop_xmt)
Arguments:

| - The"C" label for this structure.

putc - bool (* putc)(serial_channel * priv, unsigned char c)

This function sends one character to the interface. It should return 'true’ if the
character is actually consumed. It should return 'false’ if there is no spacein the
interface

getc - unsigned char (*getc)(serial_channel * priv)

This function fetches one character from the interface. It will be only calledin a
non-interrupt driven mode, thusit should wait for a character by polling the device
until ready.

set_config - bool (*set_config)(serial_channel *priv, cyg_seria_info_t *config)

Thisfunction is used to configure the port. It should return 'true’ if the hardwareis
updated to match the desired configuration. It should return false' if the port cannot
support some parameter specified by the given configuration. E.g. selecting 1.5 stop
bits and 8 data bitsisinvalid for most serial devices and should not be allowed.

gtart_xmit - void (* start_xmit)(seria_channel * priv)

In interrupt mode, turn on the transmitter and allow for transmit interrupts.
stop_xmit - void (* stop_xmit)(serial_channel * priv)
In interrupt mode, turn off the transmitter.

The device interface module can execute functions in the hardware independent driver

126 n eCos Reference Manual eCos

How to write a driver

via“chan->callbacks’. These functions are available;

void (*serial _init)(

serial _channel *chan)

Thisfunction isused to initialize the serial channel. Itisonly required if the channel is
being used in interrupt mode.

voi d (*xnt_char)(

serial _channel *chan)
This function would be called from an interrupt handler after atransmit interrupt

indicating that additional characters may be sent. The upper driver will call the "putc"
function as appropriate to send more data to the device.

void (*rcv_char)(

serial _channel *chan,
unsi gned char C)

Thisfunction is used to tell the driver that a character has arrived at the interface. This
function istypically called from the interrupt handler.

Furthermore, if the device has a FIFO it should require the hardware independent
driver to provide block transfer functionality (driver CDL should include 'implements
CYGINT_IO_SERIAL_BLOCK_TRANSFER). In that case, the following functions
are available aswell:

bool (*data_xm _req)(serial_channel *chan, int space

int* chars_avail, unsigned char** chars)

void (*data_xnt_done) (serial _channel *chan)

Instead of calling xmt_char to get a single character for transmission at atime, the
driver should call data xmt_req in aloop, requesting character blocks for transfer.
Call with 'space’ argument of how much space thereis available in the FIFO.

If the call returnstrue, the driver can read 'chars avail' characters from 'chars and
copy them into the FIFO.

If the call returns false, there are no more buffered characters and the driver should
continue without filling up the FIFO.
When all data has been unloaded, the driver must call data rcv_done.

bool (*data_rcv_req)(serial_channel *chan, int avail,
int* space_avail, unsigned char** space)
voi d (*data_rcv_done) (serial _channel *chan)
Instead of calling rcv_char with a single character at atime, the driver should call
data_rcv_reqin aloop, requesting space to unload the FIFO to. 'avail' is the number of
characters the driver wishes to unload.
If the call returns true, the driver can copy 'space avail' characters to 'space’.

If the call returns false, the input buffer isfull. It isup to the driver to decide what to

eCos

eCos Reference Manual n 127

How to write a driver

do in that case (callback functions for registering overflow are being planned for later
versions of the serial driver).

When all data has been unloaded, the driver must call data rcv_done.

128 n eCos Reference Manual eCos

Device Driver Interface to the Kernel

14

Device Driver Interface to the
Kernel

This chapter describes the API that device drivers may use to interact with the kernel
and HAL. It is primarily concerned with the control and management of interrupts.
The same API will be present in configurations where the kernel is not present. In this
case the functions will be supplied by code acting directly on the HAL.

Interrupt Model

eCos presents athree level interrupt model to device drivers. This consists of Interrupt
Service Routines (ISRs) that are invoked in response to a hardware interrupt; Deferred
Service Routines (DSRs) that are invoked in response to arequest by an ISR; and
threads that are the clients of the driver.

Hardware interrupts are delivered with minimal intervention to an ISR. The HAL
decodes the hardware source of theinterrupt and callsthe I SR of the attached interrupt
object. ThisISR may manipulate the hardware but is only allowed to make arestricted
set of callson thedriver API. When it returns, an | SR may request that its DSR should
be scheduled to run.

A DSRwill berunwhen it is safe to do so without interfering with the scheduler. M ost
of the time the DSR will run immediately after the ISR, but if the current thread isin

eCos

eCos Reference Manual n 129

Device Driver Interface to the Kernel

the scheduler, it will be delayed until the thread isfinished. A DSR isallowed to make
alarger set of driver API calls, including, in particular, being able to call
cyg_drv_cond_si gnal () towake up waiting threads.

Finally, threads are able to make al API callsand in particular are allowed to wait on
mutexes and condition variables.

For adevice driver to receive interrupts it must first define ISR and DSR routines as
shown below, and then call cyg_drv_i nt errupt _creat e() . Using the handle
returned, the driver must then call cyg_drv_i nterrupt _attach() to actually attach
the interrupt to the hardware vector.

Synchronization

There are three levels of synchronization supported:

1. Synchronization with ISRs. This nhormally means disabling interrupts to prevent
the ISR running during a critical section. On a multiprocessor thiswill also
require aspinlock. Thisisimplemented by the cyg_drv_i sr_| ock() and
cyg_drv_i sr_unl ock() functions. This mechanism should be used sparingly and
for short periods only.

2. Synchronization with DSRs. Thiswill be implemented in the kernel by taking the
scheduler lock to prevent DSRs running during critical sections. In non-kernel
configurationsit will beimplemented by non-kernel code. Thisisimplemented by
thecyg_drv_dsr_I ock() andcyg_drv_dsr_unl ock() functions. Aswith ISR
synchronization, this mechanism should be used sparingly.

3. Synchronization with threads. Thisisimplemented with mutexes and condition
variables. Only threads may lock the mutexes and wait on the condition variables,
although DSRs may signal condition variables.

ISRs are run with interrupts disabled, so it is not necessary to call

cyg_drv_isr_lock() inanISR. Similarly DSRs are run with the scheduler lock

taken, so it is not necessary to call cyg_drv_dsr_I ock() in DSRs.

Device Driver Models

There are several ways in which device drivers may be built. The exact model chosen
will depend on the properties of the device and the behavior desired. There are three
basic models that may be adopted.

Thefirst model isto do all device processing in the ISR. When it isinvoked the ISR
programs the device hardware directly and accesses data to be transferred directly in

130 n eCos Reference Manual eCos

Device Driver Interface to the Kernel

memory. The ISR should also call cyg_drv_i nterrupt _acknow edge() . Whenitis
finished it may optionally request that its DSR be invoked. The DSR does nothing but
call cyg_drv_cond_si gnal () to cause athread to be woken up. Thread level code
must call cyg_drv_i sr_l ock(), Ofr cyg_drv_i nterrupt _mask() to prevent ISRs
running while it manipulates shared memory.

The second model isto defer device processing to the DSR. The ISR simply prevents
further delivery of interrupts by either programming the device, or by calling
cyg_drv_interrupt_mask(). It may then call cyg_drv_i nterrupt _acknow edge()
to allow other interruptsto be delivered and request that its DSR be called. When the
DSR runsit does the majority of the device handling, optionally signals a condition
variable to wake athread, and finishes by calling cyg_drv_i nt errupt _unmask() to
re-allow device interrupts. Thread level code usescyg_drv_dsr _I ock() to prevent
DSRs running while it manipulates shared memory.

The third model isto defer device processing even further to athread. The ISR
behaves exactly asin the previous model and simply blocks and acknowledges the
interrupt before request that the DSR run. The DSR itself only calls
cyg_drv_cond_si gnal () towakethethread. When the thread awakensit performsall
device processing, and hasfull accessto all kernel facilities whileit does so. It should
finish by calling cyg_drv_i nt errupt _unmask() to re-allow device interrupts.
Thefirst model is good for devices that need immediate processing and interact
infrequently with thread level. The second model trades alittle latency in dealing with
the device for aless intrusive synchronization mechanism. The last model allows
device processing to be scheduled with other threads and permits more complex
device handling.

Synchronization Levels

Since it would be dangerous for an ISR or DSR to make acall that might reschedule
the current thread (by trying to lock a mutex for example) all functionsin this AP
have an associated synchronization level. These levels are:

Thread

This function may only be called from within threads. Thisis usually the client
code that makes callsinto the device driver. In anon-kernel configuration, this
will be code running at the default non-interrupt level.

DSR

This function may be called by either DSR or thread code.
ISR

This function may be called from ISR, DSR or thread code.

eCos

eCos Reference Manual n 131

Device Driver Interface to the Kernel

The following table shows, for each API function, the levels at which is may be

called:

Function

Callable from

I SR

DSR

cyg_drv_isr_l ock
cyg_drv_isr_unl ock
cyg_drv_dsr_l ock
cyg_drv_dsr_unl ock
cyg_drv_mut ex_i nit
cyg_drv_mut ex_dest r oy
cyg_drv_mut ex_| ock
cyg _drv_mutex_trylock
cyg_drv_nut ex_unl ock
cyg_drv_mut ex_rel ease
cyg_drv_cond_init
cyg_drv_cond_destroy

cyg_drv_cond_wai t
cyg_drv_cond_si gnal
cyg_drv_cond_broadcast

cyg drv_i
cyg_drv_
cyg_drv_
cyg_drv_
cyg drv_i
cyg drv_i
cyg drv_i
cyg_drv_
cyg_drv_

The API

nterrupt_create
nterrupt_del ete
nterrupt_attach

nt errupt _det ach

nt err upt _mask

nt er r upt _unmask

nt errupt _acknow edge
nt errupt_configure
nterrupt_| eve

XX X X X X X

X X

XX X X X X X

XXXXXXXXXXXXXXXXXXXXXXXX

This section details the Driver Kernel Interface. Note that most of these functions are
identical to Kernel C API calls, and will in most configurations be wrappers for them.
In non-kernel configurations they will be supported directly by the HAL, or by codeto
emul ate the required behavior.

This APl is defined in the header filecyg/ hal / drv_api . h.

cyg _drv_isr_lock

Function:

voi d cyg_

drv_isr_l ock()

132 n eCos Reference Manual

eCos

Device Driver Interface to the Kernel

Arguments:
None
Result:
None
Level:
DSR
Description:

Disables delivery of interrupts, preventing all 1SRs running. This function
maintains a counter of the number of timesit is called.

cyg_drv_isr_unlock

Function:
voi d cyg_drv_isr_unl ock()

Arguments:
None
Resullt:
None
Level:
DSR
Description:

Re-enables delivery of interrupts, allowing ISRs to run. This function decrements
the counter maintained by cyg_drv_i sr_I ock(), and only re-allowsinterrupts
when it goesto zero.

cyg_drv_dsr_lock

Function:
voi d cyg_drv_dsr_I ock()
Arguments:
None
Result:
None
Level:
Thread
Description:

eCos

eCos Reference Manual n 133

Device Driver Interface to the Kernel

Disables scheduling of DSRs. This function maintains a counter of the number of
timesit has been called.

cyg_drv_dsr_unlock

Function:
voi d cyg_drv_dsr_unl ock()
Arguments:
None
Result:
None
Level:
Thread
Description:

Re-enables scheduling of DSRs. This function decrements the counter
incremented by cyg_drv_dsr _I ock() . DSRs are only allowed to be delivered
when the counter goes to zero.

cyg_drv_mutex_init
Function:
voi d cyg_drv_mutex_init(cyg_drv_mutex *nutex)
Arguments:
mutex - pointer to mutex to initialize
Resullt:
None
Level:
Thread
Description:
Initialize the mutex pointer to by the mutex argument.

cyg_drv_mutex_destroy

Function:
voi d cyg_drv_mutex_destroy(cyg drv_mutex *nutex)
Arguments:
mutex - pointer to mutex to destroy
Resullt:

134 n eCos Reference Manual eCos

Device Driver Interface to the Kernel

None
Level:
Thread
Description:
Destroy the mutex pointed to by the mutex argument.

cyg_drv_mutex_lock

Function:
cyg_bool cyg_drv_nmutex_l ock(cyg_drv_mutex *mutex)
Arguments:
mutex - pointer to mutex to lock
Resullt:
TRUE it the thread has claimed the lock, FAL SE otherwise.
Level:
Thread
Description:

Attempt to lock the mutex pointed to by the mutex argument. If the mutex is
aready locked by another thread then this thread will wait until that thread is
finished. If the result from this function is FAL SE then the thread was broken out
of itswait by some other thread. In this case the mutex will not have been locked.

cyg_drv_mutex_trylock

Function:
cyg_bool cyg_drv_nmutex_tryl ock(cyg_drv_nutex *nutex)
Arguments:
mutex - pointer to mutex to lock
Result:
TRUE if the mutex has been locked, FAL SE otherwise.
Level:
Thread
Description:

Attempt to lock the mutex pointed to by the mutex argument without waiting. If
the mutex is already locked by some other thread then this function returns
FALSE. If the function can lock the mutex without waiting, then TRUE is
returned.

eCos

eCos Reference Manual n 135

Device Driver Interface to the Kernel

cyg_drv_mutex_unlock
Function:

voi d cyg_drv_mutex_unl ock(cyg_drv_mutex *mutex)
Arguments:
mutex - pointer to mutex to unlock
Resullt:
None
Level:
Thread
Description:

Unlock the mutex pointed to by the mutex argument. If there are any threads
waiting to claim the lock, one of them iswoken up to try and claim it.

cyg_drv_mutex_release
Function:

voi d cyg_drv_mutex_rel ease(cyg_drv_mutex *mutex)
Arguments:
mutex - pointer to mutex to release
Resullt:
None
Level:
Thread
Description:

Release all threads waiting on the mutex pointed to by the mutex argument. These
threads will return from cyg_drv_mut ex_| ock() with a FALSE result and will
not have claimed the mutex. This function has no effect on any thread that may
have the mutex claimed.

cyg_drv_cond_init
Function:

void cyg_drv_cond_init(cyg_drv_cond *cond
cyg_drv_mutex *rutex)

Arguments:
cond—condition variable to initialize

136 n eCos Reference Manual eCos

Device Driver Interface to the Kernel

mutex—mutex to associate with this condition variable
Result:

None
Level:

Thread
Description:

Initialize the condition variable pointed to by the cond argument. The mutex
argument must point to a mutex with which this condition variable is associated.
A thread may only wait on this condition variable when it has already locked the
associated mutex. Waiting will cause the mutex to be unlocked, and when the
thread is reawakened, it will automatically claim the mutex before continuing.

cyg_drv_cond_destroy

Function:
voi d cyg_drv_cond_destroy(cyg_drv_cond *cond)
Arguments:
cond - condition variable to destroy
Result:
None
Level:
Thread
Description:
Destroy the condition variable pointed to by the cond argument.

cyg_drv_cond_wait

Function:
voi d cyg_drv_cond_wait(cyg_drv_cond *cond)
Arguments:
cond - condition variable to wait on
Resullt:
None
Level:
Thread
Description:
Wait for asignal on the condition variable pointed to by the cond argument. The

eCos

eCos Reference Manual n 137

Device Driver Interface to the Kernel

thread must have locked the associated mutex before waiting on this condition
variable. While the thread waits, the mutex will be unlocked, and will be
re-locked before this function returns. It is possible for threads waiting on a
condition variable to occasionally wake up spuriously. For thisreasonitis
necessary to use this function in aloop that re-tests the condition each time it
returns. Note that this function performs an implicit scheduler unlock/relock
sequence, so that it may be used within an explicit
cyg_drv_dsr_lock()...cyg _drv_dsr_unl ock() structure.

cyg_drv_cond_signal
Function:

voi d cyg_drv_cond_signal (cyg_drv_cond *cond)
Arguments:
cond - condition variable to signal
Result:
None
Level:
DSR
Description:

Signal the condition variable pointed to by the cond argument. If there are any
threads waiting on thisvariable at |east one of them will be awakened. Notethat in
some configurations there may not be any difference between this function and
cyg_drv_cond_broadcast ().

cyg _drv_cond_broadcast
Function:

voi d cyg_drv_cond_broadcast(cyg_drv_cond *cond)
Arguments:
cond - condition variable to broadcast to
Resullt:
None
Level:
DSR
Description:

Signal the condition variable pointed to by the cond argument. If there are any
threads waiting on this variable they will all be awakened.

138 n eCos Reference Manual eCos

Device Driver Interface to the Kernel

cyg_drv_interrupt _create

Function:

void cyg_drv_interrupt_create(
cyg_vector_t vector,

cyg_priority_t priority,
cyg_addrword_t data,
cyg_I SRt *isr,
cyg_DSR t *dsr,
cyg_handl e_t *handl e,
cyg_interrupt *intr

)

Arguments:
vector—vector to attach to
priority—queueing priority
data—data pointer
isr—interrupt service routine
dsr—deferred service routine
handle—returned handle
intr—put interrupt object here

Result:
None

Level:
Thread

Description:

Create an interrupt object and returns a handle to it. The object contains
information about which interrupt vector to use and the ISR and DSR that will be
called after the interrupt object is attached. The interrupt object will be allocated
in the memory passed in the intr parameter. The interrupt object is not
immediately attached; it must be attached with the cyg_i nt errupt _at t ach()
call.

cyg_drv_interrupt_delete

Function:
void cyg_drv_interrupt_del ete(cyg_handle_t interrupt)
Arguments:
interrupt—interrupt to delete

eCos eCos Reference Manual n 139

Device Driver Interface to the Kernel

Resullt:
None

Level:
Thread

Description:

Detach the interrupt from the vector and free the memory passed in the intr
argument to cyg_drv_i nterrupt _create() for reuse.

cyg_drv_interrupt_attach

Function:
void cyg_drv_interrupt_attach(cyg_handle_t interrupt)

Arguments:
interrupt—interrupt to attach
Result:
None
Level:
ISR
Description:

Attach the interrupt to the vector so that interrupts will be delivered to the ISR
when the interrupt occurs.

cyg_drv_interrupt_detach

Function:
void cyg_drv_interrupt_detach(cyg_handle_t interrupt)
Arguments:
interrupt—interrupt to detach
Resullt:
None
Level:
ISR
Description:

Detach the interrupt from the vector so that interrupts will no longer be delivered
to the ISR.

140 n eCos Reference Manual eCos

Device Driver Interface to the Kernel

cyg_drv_interrupt_mask

Function:
voi d cyg_drv_interrupt_nask(cyg_vector_t vector)
Arguments:
vector—vector to mask
Resullt:
None
Level:
ISR
Description:

Program the interrupt controller to stop delivery of interrupts on the given vector.
On architectures which implement interrupt priority levels this may also disable
al lower priority interrupts.

cyg_drv_interrupt_unmask

Function:
voi d cyg_drv_interrupt_unmask(cyg_vector_t vector)

Arguments:
vector—vector to unmask
Resullt:
None
Level:
ISR
Description:

Program the interrupt controller to re-allow delivery of interrupts on the given
vector.

cyg_drv_interrupt_acknowledge

Function:
voi d cyg_drv_interrupt_acknow edge(cyg_vector_t vector)

Arguments:
vector—vector to acknowledge
Result:

eCos

eCos Reference Manual n 141

Device Driver Interface to the Kernel

None
Level:

ISR
Description:

Perform any processing required at the interrupt controller and in the CPU to
cancel theinterrupt request. An ISR may also need to program the hardware of the
device to prevent an immediate re-triggering of the interrupt.

cyg_drv_interrupt_configure

Function:

voi d cyg_drv_interrupt_configure(
cyg_vector_t vector,
cyg_bool _t |evel,
cyg_bool _t up
)

Arguments:
vector—vector to configure
level—level or edgetriggered
up—rising/falling edge, high/low level
Result:
None
Level:
ISR
Description:

Program the interrupt controller with the characteristics of the interrupt source.
The level argument chooses between level- or edge-triggered interrupts. The up
argument chooses between high and low level for level triggered interrupts or
rising and falling edges for edge triggered interrupts. This function only works
with interrupt controllers that can control these parameters.

cyg_drv_interrupt_level

Function:

voi d cyg_drv_interrupt_Ilevel (
cyg_vector_t vector,
cyg_priority_t |evel

)

142 n eCos Reference Manual eCos

Device Driver Interface to the Kernel

Arguments:
vector—vector to configure
level—level to set
Result:
None
Level:
ISR
Description:

Program the interrupt controller to deliver the given interrupt at the supplied
priority level. This function only works with interrupt controllers that can control
this parameter.

cyg ISRt

Type:

typedef cyg_uint32 cyg_I SR t(
cyg_vector_t vector,
cyg_addrword_t data

)

Fields:
vector—vector being delivered
data—data value supplied by client
Result:

Bit mask indicating whether interrupt was handled and whether the DSR should
be caled.

Description:
Interrupt Service Routines definition. A pointer to afunction with this prototypeis
passed to cyg_i nterrupt _creat e() When aninterrupt object is created. When an

interrupt is delivered the function will be called with the vector number and the
datavalue that was passed to cyg_i nterrupt _create().

Thereturn value is a bit mask containing one or both of the following bits:
CYG_ISR_HANDLED

indicates that the interrupt was handled by this ISR. It is a configuration option
whether this will prevent further ISR being run.

CYG_ISR CALL_DSR
causes the DSR that was passed to cyg_i nt errupt _creat e() to be scheduled to

eCos

eCos Reference Manual n 143

Device Driver Interface to the Kernel

be called.

cyg DSR t

Type:
typedef void cyg DSR t(
cyg_vector_t vector,
cyg_ucount 32 count,
cyg_addrword_t data

)

Fields:
vector—vector being delivered
count—number of times DSR has been scheduled
data—data value supplied by client

Result:
None

Description:
Deferred Service Routine definition. A pointer to afunction with this prototypeis
passed to cyg_i nterrupt _creat e() when aninterrupt object is created. When
the ISR request the scheduling of its DSR, this function will be called at some
later point. In addition to the vector and data arguments, which will be the same as
those passed to the ISR, this routine is al so passed a count of the number of times
the ISR has requested that this DSR be scheduled. This counter is zeroed each
time the DSR actually runs, so it indicates how many interrupts have occurred
sinceit last ran.

144 n eCos Reference Manual eCos

Device Driver Interface to the Kernel

Part V: The ISO Standard C and
Math Libraries

eCos eCos Reference Manual n 145

C and math library overview

15

C and math library overview

eCos provides compatibility with the | SO 9899:1990 specification for the standard C
library, which is essentially the same as the better-known ANSI C3.159-1989
specification (C-89).

There are three aspects of this compatibility supplied by eCos. First thereisaC
library which implements the functions defined by the | SO standard, except for the
mathematical functions. Thisis provided by the eCos C library package.

Then eCos provides a math library, which implements the mathematical functions
from the 1SO C library. This distinction between C and math librariesis frequently
drawn — most standard C library implementations provide separate linkabl e files for
the two, and the math library contains all the functions from the mat h. h header file.

Thereisathird element to the ISO C library, which is the environment in which
applications run when they use the standard C library. This environment is set up by
the C library startup procedure (see “C library startup” on page 153) and it provides
(among other things) amai n() entry point function, an exi t () function that does the
cleanup required by the standard (including handlers registered using the at exi t ()
function), and an environment that can be read with get env() .

The description in this manual focuses on the eCos-specific aspects of the C library
(mostly related to eCos's configurability) as well as mentioning the omissions from
the standard in this release. We do not attempt to define the semantics of each
function, since that information can be found in the |SO, ANSI, POSIX and |EEE
standards, and the many good books that have been written about the standard C

146 n eCos Reference Manual eCos

library, that cover usage of these functionsin a more general and useful way.

Omitted functionality

The ISO C functionality that is currently omitted in the C library can be grouped by
the header files in which they are declared:

stdio.h

remove()
rename()
tnpfile()
t npnant)
fseek()

ftell()

rew nd()

f get pos()
f set pos()

Most of these functions are omitted because they only apply to disk-based file
systems. These will be supported in afuture version of eCos.

stdlib.h

nmbl en()

nmbt owc ()

wet onb()

nbst owcs()

west onmbs()

MB_CUR_MAX

All of these functions are related to multibyte and wide character support.

Included non-1SO functions

The following functions from the POSI X specification are included for convenience:
extern char **environ variable (for setting up the environment for use with
getenv())

_exit()

strtok_r()

rand_r ()

asctine_r()

eCos eCos Reference Manual n 147

C and math library overview

ctime_r()
localtinme_r()
gmime_r()
eCos provides the following additional implementation-specific functions within the
standard C library to adjust the date and time settings:
void cyg_libc_tinme_setdst(
cyg_libc_time_dst state);
This function sets the state of Daylight Savings Time. The values for st at e are:
CYG LI BC_TI ME_DSTNA unknown
CYG_LI BC_TI ME_DSTOFF of f
CYG_ LI BC_TI ME_DSTON on

voi d cyg_libc_tinme_setzoneoffsets(
time_t stdoffset, time_t dstoffset);
This function sets the offsets from UTC used when Daylight Savings Timeis enabled
or disabled. The offsetsare intime_t's, which are seconds in the current
inplementation.
Cyg_libc_time_dst cyg_libc_time_getzoneoffsets(
time_t *stdoffset, tinme_t *dstoffset);
This function retrieves the current setting for Daylight Savings Time along with the
offsets used for both STD and DST. The offsets are both intime t's, which are
seconds in the current implementation.
cyg_bool cyg_ libc_tine_settine(
time_t utctine);
This function sets the current time for the system The timeis specified asati me_t in
UTC. It returns non-zero on error.

Math library compatibility modes

This math library is capable of being operated in several different compatibility
modes. These options deal solely with how errors are handled.

There are 4 compatibility modes: ANSI/POSIX 1003.1; |IEEE-754; X/Open
Portability Guide issue 3 (XPG3); and System V Interface Definition Edition 3.

In IEEE mode, the mat her r () function (see below) is never called, no warning
messages are printed on the stderr output stream, and errno is never set.

In ANSI/POSIX mode, errno is set correctly, but mat herr () ishever called and no
warning messages are printed on the stderr output stream.

148 n eCos Reference Manual eCos

C and math library overview

In X/Open mode, errno is set correctly, mat her r () is called, but no warning messages
are printed on the stderr output stream.

In SVID mode, functions which overflow return a value HUGE (defined in nat h. h),
which is the maximum single precision floating point value (as opposed to

HUGE_ VAL which ismeant to stand for infinity). errno is set correctly and mat herr ()
iscalled. If mat herr () returns 0, warning messages are printed on the stderr output
stream for some errors.

The mode can be compiled-in as |EEE-only, or any one of the above methods settable
at run-time.

NOTE Thismath library assumes that the hardware (or software floating point

emulation) supports | EEE-754 style arithmetic, 32-bit 2's complement integer
arithmetic, doubles are in 64-bit IEEE-754 format.

matherr()
As mentioned above, in X/Open or SVID modes, the user can supply afunction
mat herr () of theform:
i nt mat herr(
struct exception *e)
where struct exception is defined as.

struct exception {

int type;

char *nane;

doubl e argl, arg2, retval;

b
t ype isthe exception type and is one of:

DOMAIN

argument domain exception
SING

argument singularity
OVERFLOW

overflow range exception
UNDERFLOW

underflow range exception
TLOSS

total loss of significance
PLOSS

eCos eCos Reference Manual n 149

C and math library overview

partial loss of significance
nane isastring containing the name of the function
ar gl and ar g2 are the arguments passed to the function
r et val isthedefault value that will be returned by the function, and can be changed
by mat herr ()
NOTE matherr must have “C” linkage, not “C++" linkage.

If matherr returns zero, or the user doesn't supply their own matherr, then the
following usually happensin SVID mode:

Table 1: Behavior of math exception handling

Type Behavior
DOMAIN 0.0 returned, errno=EDOM, and a message printed on stderr
SING HUGE of appropriate sign isreturned, errno=EDOM, and a

message is printed on stderr
OVERFLOW HUGE of appropriate sign is returned, and errno=ERANGE
UNDERFLOW 0.0 isreturned and errno=ERANGE

TLOSS 0.0 isreturned, errno=ERANGE, and amessage is printed on
stderr
PLOSS The current implementation doesn't return this type

X/Open mode is similar except that the message is not printed on stderr and
HUGE_VAL isused in place of HUGE

Thread-safety and re-entrancy

With the appropriate configuration options set below, the math library is fully
thread-safeif:

Depending on the compatibility mode, the setting of the errno variable from the C
library isthread-safe
Depending on the compatibility mode, sending error messages to the stderr output
stream using the C library f put s() function isthread-safe
Depending on the compatibility mode, the user-supplied mat her r () function and
anything it depends on are thread-safe

In addition, with the exception of the gamma* () and | ganma* () functions, the math

library is reentrant (and thus safe to use from interrupt handlers) if the Math library is
awaysin |EEE mode.

150 n eCos Reference Manual eCos

C and math library overview

Some implementation details

Here are some detail s about the implementation which might be interesting, although
they do not affect the | SO-defined semantics of thelibrary.

It is possible to configure eCos to have the standard C library without the kernel.
You might want to do thisto use less memory. But if you disable the kernel, you
will be unable to use memory allocation, thread-safety and certain stdio functions
such as input. Other C library functionality is unaffected.

The opague type returned by cl ock() iscalled clock t, and isimplemented as a
64 bit integer. The value returned by cl ock() isonly correct if the kernel is
configured with real-time clock support, as determined by the
CYGVAR_KERNEL _COUNTERS CLOCK configuration option in ker nel . h.

The FILE typeis not implemented as a structure, but rather as a
CYG_ADDRESS.

The GNU C compiler will place its own built-in implementations instead of some
C library functions. This can be turned off with the -fno-builtin option. The
functions affected by thisare abs(), cos(), fabs(), | abs(), mencnp(),
mercpy(), sin(),sqrt(),strenp(),strcpy(),andstrlen().

For faster execution speed you should avoid this option and let the compiler use
its built-ins. This can be turned off by invoking GCC with the -fno-builtin option.

mencpy() and nenset () arelocated in the infrastructure package, not inthe C
library package. Thisis because the compiler calls these functions, and the kernel
needs to resolve them even if the C library is not configured.

Error codes such as EDOMand ERANCE, aswell asstrerror (), areimplemented
inthe error package. The error packageis separate from the rest of the C and math
libraries so that the rest of eCos can use these error handling facilities even if the
C library is not configured.

Whenfree() isinvoked, heap memory will normally be coalesced. If the
CYGSEM_KERNEL _MEMORY_CQALESCE configuration parameter is not set,
memory will not be coal esced, which might cause programs to fail.

Signals, asimplemented by <si gnal . h>, are guaranteed to work correctly if
raised using ther ai se() function from anormal working program context. Using
signals from within an ISR or DSR context is not expected to work. Also, it is not
guaranteed that if CYGSEM_LI BC_SI GNALS_HWEXCEPTI ONS is set, that
handling asignal using si gnal () will necessarily catch that form of exception.
For example, it may be expected that a divide-by-zero error would be caught by
handling sl GFPE. However it depends on the underlying HAL implementation to
implement the required hardware exception. And indeed the hardware itself may

eCos

eCos Reference Manual n 151

C and math library overview

not be capable of detecting these exceptions so it may not be possible for the HAL
implementer to do thisin any case. Despite this lack of guaranteesin this respect,
the signalsimplementation is still 1ISO C compliant since SO C does not offer any
such guarantees either.

» Thegetenv() functionisimplemented (unlessthe
CYGPKG_LI BC_ENVI RONMVENT configuration option isturned off), but thereis
no shell or put env() function to set the environment dynamically. The
environment is set in aglobal variable envi r on, declared as:

extern char **environ; // Standard environnment definition

The environment can be statically initialized at startup time using the
CYGDAT_LI BC_DEFAULT_ENVI RONMENT option. If so, remember that the
final entry of the array initializer must be NULL.

Hereisaminimal eCos program which demonstrates the use of environments (see
alsothetest casein| anguage/ ¢/l ibc/ current/tests/stdlib/getenv.c):

#i ncl ude <stdi o. h>
#include <stdlib.h>// Min header for stdlib functions

extern char **environ; // Standard environnment definition

i nt

mai n(int argc, char *argv[])
{

char *str;

char *env[] = { "PATH=/usr/local/bin:/usr/bin",
" HOMVE=/ hone/ fr ed",

"TEST=1234=5678",

"hone=hat st and",

NULL };

printf("Di splay the current PATH environnent variable\n");
environ = (char **)&env;
str = getenv("PATH');

if (str==NULL) {

printf("The current PATH is unset\n");

} else {

printf("The current PATH is \"%\"\n", str);
}

return O;

152 n eCos Reference Manual eCos

C and math library overview

Thread safety

The ISO C library has configuration options that control thread safety, i.e. working
behavior if multiple threads call the same function at the same time.
The following functionality has to be configured correctly, or used carefully in a
multi-threaded environment:

printf() (andal standard I/O functions except for spri ntf () and sscanf ()

strtok()

rand() andsrand()

signal () andrai se()

asctime(),ctime(),gntinme(),andl ocal tine()

theerrno variable

the envi ron variable

date and time settings
In some cases, to make eCos development easier, functions are provided (as specified
by POSIX 1003.1) that define re-entrant alternatives, i.e.rand_r (), strtok_r(),
asctime_r(),ctime_r(),gntinme_r(),andlocal time_r().Inother cases,
configuration options are provided that control either locking of functions or their
shared data, such as with standard I/O streams, or by using per-thread data, such as
with theerrno variable.
In some other cases, like the setting of date and time, no re-entrant or thread-safe
aternative or configuration is provided asit is simply not a worthwhile addition (date
and time should rarely need to be set.)

C library startup

The C library includes a function declared as.

void cyg_iso_c_start(void)

Thisfunction is used to start an environment in which an SO C style program can run
in the most compatible way.

Wheat this function does is to create a thread which will invoke mai n() — normally
considered a program'’s entry point. In particular, it can supply arguments to mai n()
using the CYGDAT LI BC_ARGUMENTS configuration option (see “Option:
Arguments to main()”, in Section V), and when returning from mai n() , or calling
exit (), pending stdio file output is flushed and any functions registered with
atexit() areinvoked. Thisisall compliant with the SO C standard in this respect.

Thisthread starts execution when the eCos scheduler is started. If the eCos kernel

eCos

eCos Reference Manual n 153

C and math library overview

package is not available (and hence there is no scheduler), thencyg_iso_c_start()
will invoke the mai n() function directly, i.e. it will not return until the mai n()
function returns.
Themai n() function should be defined as the following, and if defined in a C++ file,
should have “C” linkage:
extern int main(

int argc,

char *argv)[]
Thethread that is started by cyg_i so_c_start () can be manipulated directly, if you
wish. For example you can suspend it. The kernel C API needs a handle to do this,
which is available by including the following in your source code.

extern cyg_handl e_t cyg_libc_nmmin_t hread;
Then for example, you can suspend the thread with the line:

cyg_thread_suspend(cyg_libc_main_thread);

If youcall cyg_i so_c_start () and do not provide your own rmai n() function, the
system will provide amai n() for you which will simply return immediately.

In the default configuration, cyg_i so_c_start () isinvoked automatically by the
cyg_package_start () functionintheinfrastructure configuration. This meansthat in
the simplest case, your program can indeed consist of simply:

int main(int argc, char *argv[])

{
printf("Hello eCos\n");

}

If you override cyg_package_start () or cyg_start (), or disable the infrastructure
configuration option CYGSEM _START _| SO_C_COVPATI BI LI TY then you must
ensure that you call cyg_i so_c_start () yourself if you want to be able to have your
program start at the entry point of mai n() automatically.

154 n eCos Reference Manual eCos

A

darms 6, 37
AP
MITRON 51
serial driver details 116
tty driver details 121
user 112
architectural porting 89
assertions 20

C

Clibrary

ISO standard 146

omitted functionality 147

startup 153
clocks 6, 36

real-time (RTC) 6
condition variables 40
counters 6, 34
cyg_addrword t 25
cyg adarm 26
cyg_alam t 27
cyg_bool t 25
cyg clock 26
cyg code t 25
cyg cond t 26
cyg_counter 26
cyg_drv_cond_broadcast 138

Index

cyg _drv_cond_destroy 137
cyg drv_cond init 136

cyg drv_cond signal 138
cyg_drv_cond_wait 137

cyg drv_dsr_lock 133

cyg drv_dsr_unlock 134
cyg_drv_interrupt_acknowledge 141
cyg _drv_interrupt_attach 140
cyg_drv_interrupt_configure 142
cyg_drv_interrupt_create 139
cyg_drv_interrupt_delete 139
cyg_drv_interrupt_detach 140
cyg drv_interrupt_level 142
cyg drv_interrupt_mask 141
cyg_drv_interrupt_unmask 141
cyg drv_isr_lock 132

cyg drv_isr_unlock 133
cyg_drv_mutex_destroy 134
cyg_drv_mutex_init 134
cyg_drv_mutex_lock 135

cyg drv_mutex_release 136
cyg_drv_mutex_trylock 135
cyg_drv_mutex_unlock 136
cyg DSR t 27, 144
cyg_exception_handler t 26
cyg handle t 25
cyg_interrupt 26

cyg_io_get config 113
cyg_io_lookup 112

eCos

eCos Reference Manual = 155

cyg_io read 113
cyg_io_set config 113
cyg_io_write 112
cyg ISR t 27, 143
cyg_mbox 26
cyg_mempool_fix 26
cyg_mempool_info 26
cyg_mempool_var 26
cyg_mutex_lock() 19
cyg_mutex_t 26
cyg_package start() 22
cyg_prestart() 22
cyg_priority t 25
cyg_resolution t 27
cyg_sem_t 26
cyg_semaphore post() 19
cyg_start() 21
cyg_thread 26
cyg_thread create 28
cyg_thread entry t 26
cyg_tick_count_t 25
cyg_user_start() 17, 23
cyg_vector_t 25

cyg_ VSR t 27

D

Deferred Service Routines (DSRs) 3, 94, 129
device drivers
building 130
handlersfield 124
interrupt model 129
writing 123
Driver Kernel Interface 132
drivers
simple seria 114
tty 120

E

exception handling 4, 31
default 81
exceptions 18, 80

F

functions
interrupt management 59

memory pool management 60

network support 65

non-1SO POSIX 147

synchronization and communication 56
extended 59

system management 64

task management 53

task-dependent synchronization 55

time management 63

G

GDB stubs
building 93
writing 89

H

HAL
architectural files 67
architecture 66
future developments 83
implementation 66
platform 66
sourcefiles 13
architecture 14
platform 15
system startup 21, 79
handles, /0 112
Hardware Abstraction Layer (HAL) 66

interrupt
handling 5, 32
default 81
management functions 59
model 94
Interrupt Service Routines (ISRs) 3, 94, 129
interrupts 18

K

kapi.h 17
kernel
CAPI 24
headers 7
overview 2

156 = eCos Reference Manual

eCos

porting 85 P
adding configuration information 86

architectural support 86 B:(agt:‘:gm pfgting 88
memory layout information 88 porting
package-specific configuration 88 architectures 89
platform support 85 kernd 85
scheduler 2 platforms 88
sourcefiles 10 priority manipulation 31
common subdirectory 11
emory management subdirectory 12 R
instrumentation subdirectory 12
interrupt subdirectory 11 requirements when writing eCos programs 17
sched subdirectory 10
sload subdirectory 13 S
synchronigation subdirectory 11 Scheduler:lock() 3
trace subdirectory 13 Scheduler::sched lock 2
Scheduler::unlock() 3
L seria drivers
. configuration fields
libraries baud 115
SO standard C 146 flags 116
math 146 parity 115
stop 115
M word_length 115
math library 146 interface module, writing 125
compatibility modes source files
ANSI/POSIX 148 HAL 13
|IEEE 148 architecturefiles 14
SVID 149 platform files 15
X/Open 149 synchronization 130
implementation details 151 and communication functions 56
matherr() 149 extended 59
memory alocation 19 condition variables 40
memory pools 42 flags 47
management functions 60 mutexes 39
message boxes 45 semaphores 38
MITRON 47, 51 task-dependent functions 55
mutexes 39 thread 3 _
system management functions 64
system startup
N cyg_package start() 22
network support functions 65 cyg_prestart() 22
network time protocol (NTP) 6 cyg_start() 21
cyg_user_start() 23
HAL 21

eCos eCos Reference Manual = 157

T

task management functions 53
task-dependent synchronization functions 55
thread operations 27
threads
mutex priority inheritance 4
priority ceiling protocol 3
priority inheritance protocol 3
priority inversion 3
safety 153
synchronizing 3
time management functions 63
timers 6
tty driver 120
configuration fields
tty in flags 120
tty out_flags 120
types
cyg_addrword t 25
cyg alam 26
cyg darm_t 27
cyg bool t 25
cyg clock 26
cyg code t 25
cyg_cond_t 26
cyg_counter 26
cyg DSR t 27

cyg_exception_handler_t 26
cyg_handle t 25
cyg_interrupt 26
cyg ISR t 27
cyg_mbox 26
cyg_mempool_fix 26
cyg_mempool_info 26
cyg_mempool_var 26
cyg_mutex_t 26
cyg_priority t 25
cyg_resolution t 27
cyg_sem_ t 26
cyg_thread 26
cyg_thread entry t 26
cyg_tick_count_t 25
cyg_vector t 25

cyg_ VSR t 27

U
user APl 112

Vv

Vector Service Routines (VSRs) 19
vectors 18, 80

158 m eCos Reference Manual

eCos

	eCos‘ Reference Manual
	Copying terms
	Trademarks

	Contents
	Part I: Preliminaries
	eCos kernel overview
	A tour of the kernel sources

	Part II: Kernel APIs
	Requirements for programs
	System start-up
	Native kernel C language API
	mITRON API
	The eCos Hardware Abstraction Layer (HAL)
	eCos Interrupt Model

	Part III: PCI Library
	The eCos PCI Library

	Part IV: I/O Package (Device Drivers)
	Introduction
	User API
	Serial driver details
	How to write a driver
	Device Driver Interface to the Kernel

	Part V: The ISO Standard C and Math Libraries
	C and math library overview
	Index

